English
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Select site language

Olanzapine Glenmark (olanzapine) – Summary of product characteristics - N05AH03

Updated on site: 08-Oct-2017

Medication nameOlanzapine Glenmark
ATC CodeN05AH03
Substanceolanzapine
ManufacturerGlenmark Pharmaceuticals Europe Limited

1.NAME OF THE MEDICINAL PRODUCT

Olanzapine Glenmark 2.5 mg tablets

2.QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 2.5 mg olanzapine.

Excipient with known effect: Each tablet contains 0.23 mg of aspartame

For the full list of excipients, see section 6.1.

3.PHARMACEUTICAL FORM

Tablet

Yellow coloured circular flat bevelled edge tablets with ‘A’ debossed on one side.

4.CLINICAL PARTICULARS

4.1Therapeutic indications

Adults

Olanzapine is indicated for the treatment of schizophrenia.

Olanzapine is effective in maintaining the clinical improvement during continuation therapy in patients who have shown an initial treatment response.

Olanzapine is indicated for the treatment of moderate to severe manic episode.

In patients whose manic episode has responded to olanzapine treatment, olanzapine is indicated for the prevention of recurrence in patients with bipolar disorder (see section 5.1).

4.2Posology and method of administration

Adults

Schizophrenia: The recommended starting dose for olanzapine is 10 mg/day.

Manic episode: The starting dose is 15 mg as a single daily dose in monotherapy or 10 mg daily in combination therapy (see section 5.1).

Preventing recurrence in bipolar disorder: The recommended starting dose is 10 mg/day. For patients who have been receiving olanzapine for treatment of manic episode, continue therapy for preventing recurrence at the same dose. If a new manic, mixed, or depressive episode occurs, olanzapine treatment should be continued (with dose optimisation as needed), with supplementary therapy to treat mood symptoms, as clinically indicated.

During treatment for schizophrenia, manic episode and recurrence prevention in bipolar disorder, daily dosage may subsequently be adjusted on the basis of individual clinical status within the range 5-20 mg/day. An increase to a dose greater than the recommended starting dose is advised only after appropriate clinical reassessment and should generally occur at intervals of not less than 24 hours. Olanzapine can be given without regards for meals as absorption is not affected by food. Gradual tapering of the dose should be considered when discontinuing olanzapine.

Special populations

Elderly patients

A lower starting dose (5 mg/day) is not routinely indicated but should be considered for those 65 and over when clinical factors warrant (see section 4.4).

Patients with renal and/or hepatic impairment

A lower starting dose (5 mg) should be considered for such patients. In cases of moderate hepatic insufficiency (cirrhosis, Child-Pugh Class A or B), the starting dose should be 5 mg and only increased with caution.

Smokers

The starting dose and dose range need not be routinely altered for non-smokers relative to smokers. The metabolism of olanzapine may be induced by smoking. Clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.5).

When more than one factor is present which might result in slower metabolism (female gender, geriatric age, non-smoking status), consideration should be given to decreasing the starting dose. Dose escalation, when indicated, should be conservative in such patients (See sections 4.5 and 5.2).

Paediatric population

Olanzapine is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy. A greater magnitude of weight gain, lipid and prolactin alterations has been reported in short term studies of adolescent patients than in studies of adult patients (see sections 4.4, 4.8, 5.1 and 5.2).

4.3Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. Patients with known risk of narrow-angle glaucoma.

4.4Special warnings and precautions for use

During antipsychotic treatment, improvement in the patient's clinical condition may take several days to some weeks. Patients should be closely monitored during this period.

Dementia-related psychosis and/or behavioural disturbances

Olanzapine is not recommended for use in patients with dementia-related psychosis and/or behavioural disturbances because of an increase in mortality and the risk of cerebrovascular accident. In placebo-controlled clinical trials (6-12 weeks duration) of elderly patients (mean age 78 years) with dementia-related psychosis and/or disturbed behaviours, there was a 2-fold increase in the incidence of death in olanzapine-treated patients compared to patients treated with placebo (3.5 % versus 1.5 %, respectively). The higher incidence of death was not associated with olanzapine dose (mean daily dose 4.4 mg) or duration of treatment. Risk factors that may predispose this patient population to increased mortality include age > 65 years, dysphagia, sedation, malnutrition and dehydration, pulmonary conditions (e.g., pneumonia, with or without aspiration), or concomitant use of benzodiazepines. However, the incidence of death was higher in olanzapine-treated than in placebo- treated patients independent of these risk factors.

In the same clinical trials, cerebrovascular adverse events (CVAE e.g., stroke, transient ischemic attack), including fatalities, were reported. There was a 3-fold increase in CVAE in patients treated with olanzapine compared to patients treated with placebo (1.3 % versus 0.4 %, respectively). All olanzapine and placebo-treated patients who experienced a cerebrovascular event had pre-existing risk factors. Age > 75 years and vascular/mixed type dementia were identified as risk factors for CVAE in association with olanzapine treatment. The efficacy of olanzapine was not established in these trials.

Parkinson's disease

The use of olanzapine in the treatment of dopamine agonist associated psychosis in patients with Parkinson's disease is not recommended.

In clinical trials, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo (see section 4.8), and olanzapine was not more effective than placebo in the treatment of psychotic symptoms.

In these trials, patients were initially required to be stable on the lowest effective dose of anti- Parkinsonian medicinal products (dopamine agonist) and to remain on the same anti-Parkinsonian medicinal products and dosages throughout the study. Olanzapine was started at 2.5 mg/day and titrated to a maximum of 15 mg/day based on investigator judgement.

Neuroleptic Malignant Syndrome (NMS)

NMS is a potentially life-threatening condition associated with antipsychotic medicinal products. Rare cases reported as NMS have also been received in association with olanzapine.

Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

If a patient develops signs and symptoms indicative of NMS, or presents with unexplained high fever without additional clinical manifestations of NMS, all antipsychotic medicines, including olanzapine must be discontinued.

Hyperglycaemia and diabetes

Hyperglycaemia and/or development or exacerbation of diabetes occasionally associated with ketoacidosis or coma has been reported uncommonly, including some fatal cases (see section 4.8). In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines, e.g. measuring of blood glucose at baseline, 12 weeks after starting olanzapine treatment and annually thereafter. Patients treated with any antipsychotic medicines, including olanzapine, should be observed for signs and symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia, and weakness) and patients with diabetes mellitus or with risk factors for diabetes mellitus should be monitored regularly for worsening of glucose control. Weight should be monitored regularly, e.g. at baseline, 4, 8 and 12 weeks after starting olanzapine treatment and quarterly thereafter.

Lipid alterations

Undesirable alterations in lipids have been observed in olanzapine-treated patients in placebo- controlled clinical trials (see section 4.8). Lipid alterations should be managed as clinically appropriate, particularly in dyslipidemic patients and in patients with risk factors for the development of lipids disorders. Patients treated with any antipsychotic medicines, including olanzapine, should be monitored regularly for lipids in accordance with utilised antipsychotic guidelines e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Anticholinergic activity

While olanzapine demonstrated anticholinergic activity in vitro, experience during the clinical trials revealed a low incidence of related events. However, as clinical experience with olanzapine in patients with concomitant illness is limited, caution is advised when prescribing for patients with prostatic hypertrophy, or paralytic ileus and related conditions.

Hepatic function

Transient, asymptomatic elevations of hepaticaminotransferases, alanine transferase (ALT), aspartate transferase (AST) have been seen commonly, especially in early treatment.

Caution should be exercised and follow-up organised in patients with elevated ALT and/or AST, in patients with signs and symptoms of hepatic impairment, in patients with pre-existing conditions associated with limited hepatic functional reserve, and in patients who are being treated with potentially hepatotoxic medicines.

In cases where hepatitis (including hepatocellular, cholestatic or mixed liver injury) has been diagnosed, olanzapine treatment should be discontinued.

Neutropenia

Caution should be exercised in patients with low leukocyte and/or neutrophil counts for any reason, in patients receiving medicines known to cause neutropenia, in patients with a history of drug-induced bone marrow depression/toxicity, in patients with bone marrow depression caused by concomitant illness, radiation therapy or chemotherapy and in patients with hypereosinophilic conditions or with myeloproliferative disease.

Neutropenia has been reported commonly when olanzapine and valproate are used concomitantly (see section 4.8).

Discontinuation of treatment

Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea, or vomiting have been reported rarely ≥ 0.01% and < 0.1%) when olanzapine is stopped abruptly.

QT interval

In clinical trials, clinically meaningful QTc prolongations (Fridericia QT correction [QTcF] ≥ 500 milliseconds [msec] at any time post baseline in patients with baseline QTcF < 500 msec) were uncommon (0.1 % to 1 %) in patients treated with olanzapine, with no significant differences in associated cardiac events compared to placebo. However, caution should be exercised when olanzapine is prescribed with medicines known to increase QTc interval, especially in the elderly, in patients with congenital long QT syndrome, congestive heart failure, heart hypertrophy, hypokalaemia or hypomagnesaemia.

Thromboembolism

Temporal association of olanzapine treatment and venous thromboembolism has been reported uncommonly (≥ 0.1% and < 1%). A causal relationship between the occurrence of venous thromboembolism and treatment with olanzapine has not been established. However, since patients with schizophrenia often present with acquired risk factors for venous thromboembolism all possible risk factors of VTE e.g. immobilisation of patients, should be identified and preventive measures undertaken.

General CNS activity

Given the primary CNS effects of olanzapine, caution should be used when it is taken in combination with other centrally acting medicines and alcohol. As it exhibits in vitro dopamine antagonism, olanzapine may antagonize the effects of direct and indirect dopamine agonists.

Seizures

Olanzapine should be used cautiously in patients who have a history of seizures or are subject to factors, which may lower the seizure threshold.

Seizures have been reported to occur uncommonly in patients when treated with olanzapine. In most of these cases, a history of seizures or risk factors for seizures were reported.

Tardive Dyskinesia

In comparator studies of one year or less duration, olanzapine was associated with a statistically significant lower incidence of treatment emergent dyskinesia. However the risk of tardive dyskinesia increases with long-term exposure, and therefore if signs or symptoms of tardive dyskinesia appear in

a patient on olanzapine, a dose reduction or discontinuation should be considered. These symptoms can temporally deteriorate or even arise after discontinuation of treatment.

Postural hypotension

Postural hypotension was infrequently observed in the elderly in olanzapine clinical trials. It is recommended that blood pressure is measured periodically in patients over 65 years.

Sudden cardiac death

In postmarketing reports with olanzapine, the event of sudden cardiac death has been reported in patients with olanzapine. In a retrospective observational cohort study, the risk of presumed sudden cardiac death in patients treated with olanzapine was approximately twice the risk in patients not using antipsychotics. In the study, the risk of olanzapine was comparable to the risk of atypical antipsychotics included in a pooled analysis.

Paediatric population

Olanzapine is not indicated for use in the treatment of children and adolescents. Studies in patients aged 13-17 years showed various adverse reactions, including weight gain, changes in metabolic parameters and increases in prolactin levels (see sections 4.8 and 5.1).

Phenylalanine

Olanzapine Glenmark tablet contains aspartame, which is a source of phenylalanine. May be harmful for people with phenylketonuria.

4.5Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Potential interactions affecting olanzapine

Since olanzapine is metabolised by CYP1A2, substances that can specifically induce or inhibit this isoenzyme may affect the pharmacokinetics of olanzapine.

Induction of CYP1A2

The metabolism of olanzapine may be induced by smoking and carbamazepine, which may lead to reduced olanzapine concentrations. Only slight to moderate increase in olanzapine clearance has been observed. The clinical consequences are likely to be limited, but clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.2).

Inhibition of CYP1A2

Fluvoxamine, a specific CYP1A2 inhibitor, has been shown to significantly inhibit the metabolism of olanzapine. The mean increase in olanzapine Cmax following fluvoxamine was 54 % in female nonsmokers and 77 % in male smokers. The mean increase in olanzapine AUC was 52 % and 108 % respectively. A lower starting dose of olanzapine should be considered in patients who are using fluvoxamine or any other CYP1A2 inhibitors, such as ciprofloxacin. A decrease in the dose of olanzapine should be considered if treatment with an inhibitor of CYP1A2 is initiated.

Decreased bioavailability

Activated charcoal reduces the bioavailability of oral olanzapine by 50 to 60 % and should be taken at least 2 hours before or after olanzapine.

Fluoxetine (a CYP2D6 inhibitor), single doses of antacid (aluminium, magnesium) or cimetidine have not been found to significantly affect the pharmacokinetics of olanzapine.

Potential for olanzapine to affect other medicinal products

Olanzapine may antagonise the effects of direct and indirect dopamine agonists.

Olanzapine does not inhibit the main CYP450 isoenzymes in vitro (e.g. 1A2, 2D6, 2C9, 2C19, 3A4).

Thus no particular interaction is expected as verified through in vivo studies where no inhibition of metabolism of the following active substances was found: tricyclic antidepressant (representing mostly CYP2D6 pathway), warfarin (CYP2C9), theophylline (CYP1A2) or diazepam (CYP3A4 and CYP2C19).

Olanzapine showed no interaction when co-administered with lithium or biperiden.

Therapeutic monitoring of valproate plasma levels did not indicate that valproate dosage adjustment is required after the introduction of concomitant olanzapine.

General CNS activity

Caution should be exercised in patients who consume alcohol or receive medicinal products that can cause central nervous system depression.

The concomitant use of olanzapine with anti-Parkinsonian medicinal products in patients with Parkinson's disease and dementia is not recommended (see section 4.4).

QTc interval

Caution should be used if olanzapine is being administered concomitantly with medicinal products known to increase QTc interval (see section 4.4).

4.6Fertility, pregnancy and lactation

Pregnancy

There are no adequate and well-controlled studies in pregnant women. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during treatment with olanzapine. Nevertheless, because human experience is limited, olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the foetus.

New born infants exposed to antipsychotics (including olanzapine) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully.

Breast feeding

In a study in breast- feeding, healthy women, olanzapine was excreted in breast milk. Mean infant exposure (mg/kg) at steady state was estimated to be 1.8 % of the maternal olanzapine dose (mg/kg). Patients should be advised not to breast- feed an infant if they are taking olanzapine.

Fertility

Effects on fertility are unknown (see section 5.3 for preclinical information).

4.7Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. Because olanzapine may cause somnolence and dizziness, patients should be cautioned about operating machinery, including motor vehicles.

4.8Undesirable effects

Summary of the safety profile

Adults

The most frequently (seen in ≥ 1 % of patients) reported adverse reactions associated with the use of

olanzapine in clinical trials were somnolence, weight gain, eosinophilia, elevated prolactin, cholesterol, glucose and triglyceride levels (see section 4.4), glucosuria, increased appetite, dizziness, akathisia, parkinsonism, leukopenia, neutropenia (see section 4.4), dyskinesia, orthostatic hypotension, anticholinergic effects, transient asymptomatic elevations of hepaticaminotransferases (see section 4.4), rash, asthenia, fatigue, pyrexia, arthralgia, increased alkaline phosphatase, high gamma glutamyltransferase, high uric acid, high creatine phosphokinase and oedema.

Tabulated list of adverse reactions

The following table lists the adverse reactions and laboratory investigations observed from spontaneous reporting and in clinical trials. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 < 1/100), rare (≥ 1/10,000 to< 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the data available).

 

Very

Common

Uncommon

Rare

Not

 

common

 

 

 

 

 

Known

Blood and the

 

Eosinophilia

 

 

 

Thrombocytopeni

 

lymphatic system

 

Leukopenia10

 

 

 

a11

 

disorders

 

Neutropenia10

 

 

 

 

 

Immune system

 

 

Hypersensitivity11

 

 

disorders

 

 

 

 

 

 

 

Metabolism and

Weight gain 1

Elevated

Development or

Hypothermia12

 

nutrition

 

cholesterol

exacerbation of

 

 

disorders

 

levels2,3

diabetes

 

 

 

 

 

occasionally

 

 

 

 

Elevated

associated with

 

 

 

 

glucose

ketoacidosis or

 

 

 

 

levels 4

coma, including

 

 

 

 

 

some fatal cases

 

 

 

 

Elevated

(see section 4.4) 11

 

 

 

 

triglyceride

 

 

 

 

 

 

 

levels 2,5

 

 

 

 

 

 

 

Glucosuria

 

 

 

 

 

 

 

Increased

 

 

 

 

 

 

 

appetite

 

 

 

 

 

 

 

 

 

 

 

Nervous system

Somnolence

Dizziness

Seizures where in

Neuroleptic

 

disorders

 

 

most cases a history

malignant

 

 

 

Akathisia 6

of seizures or risk

syndrome (see

 

 

 

 

factors for seizures

section 4.4) 12

 

 

 

Parkinsonism 6

were reported 11

Discontinuation

 

 

 

 

 

 

 

Symptoms 7, 12

 

 

 

Dyskinesia 6

Dystonia (including

 

 

 

 

 

oculogyration) 11

 

 

 

 

 

Tardive

 

 

 

 

 

dyskinesia11

 

 

 

 

 

Amnesia 9

 

 

 

 

 

Dysarthria

 

 

 

 

 

Restless legs

 

 

 

 

 

syndrome

 

 

Cardiac

 

 

Bradycardia

Ventricular

 

disorders

 

 

QTc prolongation

tachycardia/fibrill

 

 

 

 

(see section 4.4)

ation, sudden

 

 

 

 

 

 

 

death (see section

 

 

 

 

 

4.4)11

 

Vascular

Orthostatic

 

Thromboembolism

 

 

disorders

hypotension10

 

(including

 

 

 

 

 

pulmonary

 

 

 

 

 

embolism and deep

 

 

 

 

 

vein thrombosis)

 

 

 

 

 

(see section 4.4)

 

 

Respiratory,

 

 

Epistaxis9

 

 

thoracic and

 

 

 

 

 

mediastinal

 

 

 

 

 

disorders

 

 

 

 

 

Gastrointestinal

 

Mild, transient

Abdominal

Pancreatitis11

 

disorders

 

anticholinergic

distension9

 

 

 

 

effects including

 

 

 

 

 

constipation and

 

 

 

 

 

dry mouth

 

 

 

Hepato-biliary

 

Transient,

 

Hepatitis

 

disorders

 

asymptomatic

 

(including

 

 

 

elevations of

 

hepatocellular,

 

 

 

hepatic

 

cholestatic or

 

 

 

aminotransferas

 

mixed

 

 

 

es(ALT, AST),

 

liver injury)11

 

 

 

especially in

 

 

 

 

 

early treatment

 

 

 

 

 

(see

 

 

 

 

 

section 4.4)

 

 

 

Skin and

 

Rash

Photosensitivity

 

Drug

subcutaneous

 

 

reaction

 

reaction

tissue disorders

 

 

 

 

with

 

 

 

Alopecia

 

Eosinoph

 

 

 

 

 

ilia and

 

 

 

 

 

Systemic

 

 

 

 

 

Symptom

 

 

 

 

 

s

 

 

 

 

 

(DRESS)

Musculoskeletal

 

Arthralgia9

 

Rhabdomyolysis11

 

and connective

 

 

 

 

 

tissue disorders

 

 

 

 

 

Renal and

 

 

Urinary

 

 

urinary disorders

 

 

incontinence

 

 

 

 

 

Urinary retention

 

 

 

 

 

Urinary hesitation11

 

 

Pregnancy,

 

 

 

 

Drug

puerperium and

 

 

 

 

withdraw

perinatal

 

 

 

 

al

conditions

 

 

 

 

syndrom

 

 

 

 

 

e

 

 

 

 

 

neonatal

 

 

 

 

 

(see

 

 

 

 

 

section

 

 

 

 

 

4.6)

Reproductive

 

Erectile

Amenorrhea

Priapism12

 

system and

 

dysfunction in

Breast enlargement

 

 

breast disorders

 

males

Galactorrhea in

 

 

 

 

 

females

 

 

 

 

Decreased

Gymnaecomastia/br

 

 

 

 

libido in males

east enlargement in

 

 

 

 

and females

males

 

 

General

 

Asthenia

 

 

 

disorders and

 

Fatigue

 

 

 

administration

 

Oedema

 

 

 

site conditions

 

Pyrexia10

 

Investigations

Elevated

Increased

Increased total

 

plasma

alkaline

bilirubin

 

prolactin

phosphatase10

 

 

levels 8

High creatine

 

 

 

phosphokinase11

 

 

 

High Gamma

 

 

 

Glutamyltransfe

 

 

 

rase10

 

 

 

High uric acid 10

 

1Clinically significant weight gain was observed across all baseline Body Mass Index (BMI) categories. Following short term treatment (median duration 47 days), weight gain ≥ 7 % of baseline body weight was very common (22.2%), ≥ 15% was common (4.2%) and ≥25% was uncommon

(0.8%). Patients gaining ≥7%, ≥15% and ≥25% of their baseline body weight with long-term exposure (at least 48 weeks) were very common (64.4 %, 31.7 % and 12.3 % respectively).

2Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline.

3Observed for fasting normal levels at baseline (< 5.17 mmol/l) which increased to high

(≥ 6.2 mmol/l). Changes in total fasting cholesterol levels from borderline at baseline (≥ 5.17- < 6.2 mmol/l) to high (≥ 6.2 mmol/l) were very common.

4Observed for fasting normal levels at baseline (< 5.56 mmol/l) which increased to high (≥ 7 mmol/l). Changes in fasting glucose from borderline at baseline (≥ 5.56 - < 7 mmol/l) to high (≥ 7 mmol/l) were very common.

5Observed for fasting normal levels at baseline (< 1.69 mmol/l) which increased to high

(≥ 2.26 mmol/l). Changes in fasting triglycerides from borderline at baseline (≥ 1.69 mmol/l - < 2.26 mmol/l) to high (≥ 2.26 mmol/l) were very common.

6In clinical trials, the incidence of Parkinsonism and dystonia in olanzapine-treated patients was numerically higher, but not statistically significantly different from placebo. Olanzapine-treated patients had a lower incidence of Parkinsonism, akathisia and dystonia compared with titrated doses of haloperidol. In the absence of detailed information on the pre-existing history of individual acute and tardive extrapyramidal movement disorders, it cannot be concluded at present that olanzapine produces less tardive dyskinesia and/or other tardive extrapyramidal syndromes.

7Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea and vomiting have been reported when olanzapine is stopped abruptly.

8In clinical trials of up to 12 weeks, plasma prolactin concentrations exceeded the upper limit of normal range in approximately 30% of olanzapine treated patients with normal baseline prolactin value. In the majority of these patients the elevations were generally mild, and remained below two times the upper limit of normal range.

9Adverse event identified from clinical trials in the Olanzapine Integrated Database.

10As assessed by measured values from clinical trials in the Olanzapine Integrated Database.

11Adverse event identified from spontaneous post-marketing reporting with frequency determined utilising the Olanzapine Integrated Database.

12Adverse event identified from spontaneous post-marketing reporting with frequency estimated at the upper limit of the 95% confidence interval utilising the Olanzapine Integrated Database.

Long-term exposure (at least 48 weeks)

The proportion of patients who had adverse, clinically significant changes in weight gain, glucose, total/LDL/HDL cholesterol or triglycerides increased over time. In adult patients who completed 9-12 months of therapy, the rate of increase in mean blood glucose slowed after approximately 6 months.

Additional information on special populations

In clinical trials in elderly patients with dementia, olanzapine treatment was associated with a higher incidence of death and cerebrovascular adverse reactions compared to placebo (see section 4.4). Very common adverse reactions associated with the use of olanzapine in this patient group were abnormal gait and falls. Pneumonia, increased body temperature, lethargy, erythema, visual hallucinations and urinary incontinence were observed commonly.

In clinical trials in patients with drug-induced (dopamine agonist) psychosis associated with

Parkinson’s disease, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo.

In one clinical trial in patients with bipolar mania, valproate combination therapy with olanzapine resulted in an incidence of neutropenia of 4.1 %; a potential contributing factor could be high plasma valproate levels. Olanzapine administered with lithium or valproate resulted in increased levels

(≥ 10 %) of tremor, dry mouth, increased appetite, and weight gain. Speech disorder was also reported commonly. During treatment with olanzapine in combination with lithium or divalproex, an increase of ≥ 7 % from baseline body weight occurred in 17.4 % of patients during acute treatment (up to 6 weeks). Long-term olanzapine treatment (up to 12 months) for recurrence prevention in patients with bipolar disorder was associated with an increase of ≥ 7 % from baseline body weight in 39.9 % of patients.

Paediatric population

Olanzapine is not indicated for the treatment of children and adolescent patients below 18 years. Although no clinical studies designed to compare adolescents to adults have been conducted, data from the adolescent trials were compared to those of the adult trials.

The following table summarises the adverse reactions reported with a greater frequency in adolescent patients (aged 13-17 years) than in adult patients or adverse reactions only identified during short- term clinical trials in adolescent patients. Clinically significant weight gain (≥ 7 %) appears to occur more frequently in the adolescent population compared to adults with comparable exposures. The magnitude of weight gain and the proportion of adolescent patients who had clinically significant weight gain were greater with long-term exposure (at least 24 weeks) than with short-term exposure.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10).

Metabolism and nutrition disorders

Very common: Weight gain 13, elevated triglyceride levels 14, increased appetite. Common: Elevated cholesterol levels 15

Nervous system disorders

Very common: Sedation (including: hypersomnia, lethargy, somnolence).

Gastrointestinal disorders

Common: Dry mouth

Hepatobiliary disorders

Very common: Elevations of hepatic aminotransferases (ALT/AST; see section 4.4).

Investigations

Very common: Decreased total bilirubin, increased GGT, elevated plasma prolactin levels 16

13 Following short term treatment (median duration 22 days), weight gain ≥ 7 % of baseline body weight (kg) was very common (40.6 %), ≥ 15 %of baseline body weight was common (7.1 %) and ≥

25 % was common (2.5 %). With long-term exposure (at least 24 weeks), 89.4 % gained ≥ 7 %, 55.3 % gained ≥ 15 % and 29.1 % gained ≥ 25% of their baseline body weight.

14 Observed for fasting normal levels at baseline (< 1.016 mmol/l) which increased to high

(≥ 1.467 mmol/l) and changes in fasting triglycerides from borderline at baseline (≥ 1.016 mmol/l - < 1.467 mmol/l) to high (≥ 1.467 mmol/l).

15 Changes in total fasting cholesterol levels from normal at baseline (< 4.39 mmol/l) to high

(≥ 5.17 mmol/l) were observed commonly. Changes in total fasting cholesterol levels from borderline at baseline (≥ 4.39 - < 5.17 mmol/l) to high (≥ 5.17 mmol/l) were very common.

16 Elevated plasma prolactin levels were reported in 47.4 % of adolescent patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9Overdose

Signs and symptoms

Very common symptoms in overdose (> 10 % incidence) include tachycardia, agitation/ aggressiveness, dysarthria, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Other medically significant sequelae of overdose include delirium, convulsion, coma, possible neuroleptic malignant syndrome, respiratory depression, aspiration, hypertension or hypotension, cardiac arrhythmias (< 2 % of overdose cases) and cardiopulmonary arrest. Fatal outcomes have been reported for acute overdoses as low as 450 mg but survival has also been reported following acute overdose of approximately 2 g of oral olanzapine.

Management

There is no specific antidote for olanzapine. Induction of emesis is not recommended. Standard procedures for management of overdose may be indicated (i.e. gastric lavage, administration of activated charcoal). The concomitant administration of activated charcoal was shown to reduce the oral bioavailability of olanzapine by 50 to 60 %.

Symptomatic treatment and monitoring of vital organ function should be instituted according to clinical presentation, including treatment of hypotension and circulatory collapse and support of respiratory function.

Do not use epinephrine, dopamine, or other sympathomimetic agents with beta-agonist activity since beta stimulation may worsen hypotension.

Cardiovascular monitoring is necessary to detect possible arrhythmias. Close medical supervision and monitoring should continue until the patient recovers.

5.PHARMACOLOGICAL PROPERTIES

5.1Pharmacodynamic properties

Pharmacotherapeutic group: psycholeptics, diazepines, oxazepines, thiazepines and oxepines, ATC code N05A H03.

Pharmacodynamic effects

Olanzapine is an antipsychotic, antimanic and mood stabilising agent that demonstrates a broad pharmacologic profile across a number of receptor systems.

In preclinical studies, olanzapine exhibited a range of receptor affinities (Ki < 100 nM) for serotonin

5HT2A/2C, 5HT3, 5HT6; dopamine D1, D2, D3, D4, D5; cholinergic muscarinic receptors M1-M5;

α 1 adrenergic; and histamine H1 receptors. Animal behavioural studies with olanzapine indicated 5HT, dopamine, and cholinergic antagonism, consistent with the receptor-binding profile. Olanzapine demonstrated a greater in vitro affinity for serotonin 5HT2 than dopamine D2 receptors and greater 5HT2 than D2 activity in vivo, models. Electrophysiological studies demonstrated that olanzapine selectively reduced the firing of mesolimbic (A10) dopaminergic neurons, while having little effect on the striatal (A9) pathways involved in motor function. Olanzapine reduced a conditioned avoidance response, a test indicative of antipsychotic activity, at doses below those producing catalepsy, an effect indicative of motor side-effects. Unlike some other antipsychotic agents, olanzapine increases responding in an “anxiolytic” test.

In a single oral dose (10 mg) Positron Emission Tomography (PET) study in healthy volunteers, olanzapine produced a higher 5HT2A than dopamine D2 receptor occupancy. In addition, a Single Photon Emission Computed Tomography (SPECT) imaging study in schizophrenic patients revealed that olanzapine-responsive patients had lower striatal D2 occupancy than some other antipsychotic and risperidone-responsive patients, while being comparable to clozapine-responsive patients.

Clinical efficacy

In two of two placebo and two of three comparator controlled trials with over 2,900 schizophrenic patients presenting with both positive and negative symptoms, olanzapine was associated with statistically significantly greater improvements in negative as well as positive symptoms.

In a multinational, double-blind, comparative study of schizophrenia, schizoaffective, and related disorders which included 1,481 patients with varying degrees of associated depressive symptoms (baseline mean of 16.6 on the Montgomery-Asberg Depression Rating Scale), a prospective secondary analysis of baseline to endpoint mood score change demonstrated a statistically significant improvement (p= 0.001) favouring olanzapine (- 6.0) versus haloperidol (- 3.1).

In patients with a manic or mixed episode of bipolar disorder, olanzapine demonstrated superior efficacy to placebo and valproate semisodium (divalproex) in reduction of manic symptoms over 3 weeks. Olanzapine also demonstrated comparable efficacy results to haloperidol in terms of the

proportion of patients in symptomatic remission from mania and depression at 6 and 12 weeks. In a co-therapy study of patients treated with lithium or valproate for a minimum of 2 weeks, the addition of olanzapine 10 mg (co-therapy with lithium or valproate) resulted in a greater reduction in symptoms of mania than lithium or valproate monotherapy after 6 weeks.

In a 12-month recurrence prevention study in manic episode patients who achieved remission on olanzapine and were then randomised to olanzapine or placebo, olanzapine demonstrated statistically significant superiority over placebo on the primary endpoint of bipolar recurrence. Olanzapine also showed a statistically significant advantage over placebo in terms of preventing either recurrence into mania or recurrence into depression.

In a second 12-month recurrence prevention study in manic episode patients who achieved remission with a combination of olanzapine and lithium and were then randomised to olanzapine or lithium alone, olanzapine was statistically non-inferior to lithium on the primary endpoint of bipolar recurrence (olanzapine 30.0 %, lithium 38.3 %; p = 0.055).

In an 18-month co-therapy study in manic or mixed episode patients stabilised with olanzapine plus a mood stabiliser (lithium or valproate), long-term olanzapine co-therapy with lithium or valproate was not statistically significantly superior to lithium or valproate alone in delaying bipolar recurrence, defined according to syndromic (diagnostic) criteria.

Paediatric population

Controlled efficacy data in adolescents (ages 13 to 17 years) are limited to short term studies in schizophrenia (6 weeks) and mania associated with bipolar I disorder (3 weeks), involving less than 200 adolescents. Olanzapine was used as a flexible dose starting with 2.5 and ranging up to

20 mg/day. During treatment with olanzapine, adolescents gained significantly more weight compared with adults. The magnitude of changes in fasting total cholesterol, LDL cholesterol, triglycerides, and prolactin (see sections 4.4 and 4.8) were greater in adolescents than in adults. There are no controlled data on maintenance of effect or long term safety (see sections 4.4 and 4.8). Information on long term safety is primarily limited to open-label, uncontrolled data.

5.2Pharmacokinetic properties

Absorption

Olanzapine is well absorbed after oral administration, reaching peak plasma concentrations within 5 to 8 hours. The absorption is not affected by food. Absolute oral bioavailability relative to intravenous administration has not been determined.

Distribution

The plasma protein binding of Olanzapine was about 93 % over the concentration range of about 7 to about 1000 ng/ml. Olanzapine is bound predominantly to albumin and α1-acid-glycoprotein.

Biotransformation

Olanzapine is metabolized in the liver by conjugative and oxidative pathways. The major circulating metabolite is the 10-N-glucuronide, which does not pass the blood brain barrier. Cytochromes P450-CYP1A2 and P450-CYP2D6 contribute to the formation of the N-desmethyl and 2-hydroxymethyl metabolites, both exhibited significantly less in vivo pharmacological activity than olanzapine in animal studies. The predominant pharmacologic activity is from the parent olanzapine.

Elimination

After oral administration, the mean terminal elimination half-life of olanzapine in healthy subjects varied on the basis of age and gender.

In healthy elderly (65 and over) versus non-elderly subjects, the mean elimination half-life was prolonged (51.8 versus 33.8 hr) and the clearance was reduced (17.5 versus 18.2 l/hr). The pharmacokinetic variability observed in the elderly is within the range for the non-elderly. In 44 patients with schizophrenia > 65 years of age, dosing from 5 to 20 mg/day was not associated with any distinguishing profile of adverse events.

In female versus male subjects the mean elimination half life was somewhat prolonged (36.7 versus 32.3 hrs) and the clearance was reduced (18.9 versus 27.3 l/hr). However, olanzapine (5-20 mg) demonstrated a comparable safety profile in female (n = 467) as in male patients (n = 869).

Renal impairment

In renally impaired patients (creatinine clearance < 10 ml/min) versus healthy subjects, there was no significant difference in mean elimination half-life (37.7 versus 32.4 hr) or clearance (21.2 versus 25.0 l/hr). A mass balance study showed that approximately 57 % of radiolabelled olanzapine appeared in urine, principally as metabolites.

Smokers

In smoking subjects with mild hepatic dysfunction, mean elimination half-life (39.3 hr) was prolonged and clearance (18.0 l/hr) was reduced analogous to non-smoking healthy subjects (48.8 hr and

14.1 l/hr, respectively).

In non-smoking versus smoking subjects (males and females) the mean elimination half-life was prolonged (38.6 versus 30.4 hr) and the clearance was reduced (18.6 versus 27.7 l/hr).

The plasma clearance of olanzapine is lower in elderly versus young subjects, in females versus males, and in non-smokers versus smokers. However, the magnitude of the impact of age, gender, or smoking on olanzapine clearance and half-life is small in comparison to the overall variability between individuals.

In a study of Caucasians, Japanese, and Chinese subjects, there were no differences in the pharmacokinetic parameters among the three populations.

Paediatric population Adolescents (ages 13 to 17 years):

The pharmacokinetics of olanzapine are similar between adolescents and adults. In clinical studies, the average olanzapine exposure was approximately 27 % higher in adolescents. Demographic differences between the adolescents and adults include a lower average body weight and fewer adolescents were smokers. Such factors possibly contribute to the higher average exposure observed in adolescents.

5.3Preclinical safety data

Acute (single-dose) toxicity

Signs of oral toxicity in rodents were characteristic of potent neuroleptic compounds: hypoactivity, coma, tremors, clonic convulsions, salivation, and depressed weight gain. The median lethal doses were approximately 210 mg/kg (mice) and 175 mg/kg (rats).

Dogs tolerated single oral doses up to 100 mg/kg without mortality. Clinical signs included sedation, ataxia, tremors, increased heart rate, labored respiration, miosis, and anorexia. In monkeys, single oral doses up to 100 mg/kg resulted in prostration and, at higher doses, semi-consciousness.

Repeated-dose toxicity

In studies up to 3 months duration in mice and up to 1 year in rats and dogs, the predominant effects were CNS depression, anticholinergic effects, and peripheral haematological disorders. Tolerance developed to the CNS depression. Growth parameters were decreased at high doses. Reversible effects consistent with elevated prolactin in rats included decreased weights of ovaries and uterus and morphologic changes in vaginal epithelium and in mammary gland.

Haematologic toxicity:

Effects on haematology parameters were found in each species, including dose-related reductions in circulating leukocytes in mice and non-specific reductions of circulating leukocytes in rats; however, no evidence of bone marrow cytotoxicity was found.

Reversible neutropenia, thrombocytopenia, or anaemia developed in a few dogs treated with 8 or 10 mg/kg/day (total olanzapine exposure [AUC] is 12- to 15-fold greater than that of a man given a

12-mg dose). In cytopenic dogs, there were no adverse events on progenitor and proliferating cells in the bone marrow.

Reproductive toxicity

Olanzapine had no teratogenic effects. Sedation affected mating performance of male rats. Estrous cycles were affected at doses of 1.1 mg/kg (3 times the maximum human dose) and reproduction parameters were influenced in rats given 3 mg/kg (9 times the maximum human dose).

In the offspring of rats given olanzapine, delays in foetal development and transient decreases in offspring activity levels were seen.

Mutagenicity

Olanzapine was not mutagenic or clastogenic in a full range of standard tests, which included bacterial mutation tests and in vitro and in vivo mammalian tests.

Carcinogenicity

Based on the results of studies in mice and rats, it was concluded that olanzapine is not carcinogenic.

6.PHARMACEUTICAL PARTICULARS

6.1List of excipients

Mannitol E 421

Microcrystalline cellulose

Aspartame E 951

Crospovidone

Magnesium stearate

6.2Incompatibilities

Not applicable.

6.3Shelf life

30 months

6.4Special precautions for storage

Store below 30 C

6.5Nature and contents of container

Aluminium/aluminium blisters in cartons of 28, 56, 70, 98 tablets per carton.

Not all pack sizes may be marketed

6.6Special precautions for disposal

No special requirements

7.MARKETING AUTHORISATION HOLDER

Glenmark Pharmaceuticals Europe Limited

Laxmi House

2-B Draycott Avenue

Kenton

Harrow

Middlesex

HA3 OBU

United Kingdom

8.MARKETING AUTHORISATION NUMBER(S)

EU/1/09/587/001

EU/1/09/587/002

EU/1/09/587/003

EU/1/09/587/020

9.DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 03 December 2009

Date of latest renewal: 19 August 2014

10.DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu

1. NAME OF THE MEDICINAL PRODUCT

Olanzapine Glenmark 5 mg tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 5 mg olanzapine.

Excipient with known effect: Each tablet contains 0.23 mg of aspartame

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Tablet

Yellow coloured circular flat bevelled edge tablets with ‘B’ debossed on one side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Adults

Olanzapine is indicated for the treatment of schizophrenia.

Olanzapine is effective in maintaining the clinical improvement during continuation therapy in patients who have shown an initial treatment response.

Olanzapine is indicated for the treatment of moderate to severe manic episode.

In patients whose manic episode has responded to olanzapine treatment, olanzapine is indicated for the prevention of recurrence in patients with bipolar disorder (see section 5.1).

4.2 Posology and method of administration

Adults

Schizophrenia: The recommended starting dose for olanzapine is 10 mg/day.

Manic episode: The starting dose is 15 mg as a single daily dose in monotherapy or 10 mg daily in combination therapy (see section 5.1).

Preventing recurrence in bipolar disorder: The recommended starting dose is 10 mg/day. For patients who have been receiving olanzapine for treatment of manic episode, continue therapy for preventing recurrence at the same dose. If a new manic, mixed, or depressive episode occurs, olanzapine treatment should be continued (with dose optimisation as needed), with supplementary therapy to treat mood symptoms, as clinically indicated.

During treatment for schizophrenia, manic episode and recurrence prevention in bipolar disorder, daily dosage may subsequently be adjusted on the basis of individual clinical status within the range 5-20 mg/day. An increase to a dose greater than the recommended starting dose is advised only after appropriate clinical reassessment and should generally occur at intervals of not less than 24 hours. Olanzapine can be given without regards for meals as absorption is not affected by food. Gradual tapering of the dose should be considered when discontinuing olanzapine.

Special populations

Elderly patients

A lower starting dose (5 mg/day) is not routinely indicated but should be considered for those 65 and over when clinical factors warrant (see section 4.4).

Patients with renal and/or hepatic impairment

A lower starting dose (5 mg) should be considered for such patients. In cases of moderate hepatic insufficiency (cirrhosis, Child-Pugh Class A or B), the starting dose should be 5 mg and only increased with caution.

Smokers

The starting dose and dose range need not be routinely altered for non-smokers relative to smokers. The metabolism of olanzapine may be induced by smoking. Clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.5).

When more than one factor is present which might result in slower metabolism (female gender, geriatric age, non-smoking status), consideration should be given to decreasing the starting dose. Dose escalation, when indicated, should be conservative in such patients (See sections 4.5 and 5.2).

Paediatric population

Olanzapine is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy. A greater magnitude of weight gain, lipid and prolactin alterations has been reported in short term studies of adolescent patients than in studies of adult patients (see sections 4.4, 4.8, 5.1 and 5.2).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. Patients with known risk of narrow-angle glaucoma.

4.4 Special warnings and precautions for use

During antipsychotic treatment, improvement in the patient's clinical condition may take several days to some weeks. Patients should be closely monitored during this period.

Dementia-related psychosis and/or behavioural disturbances

Olanzapine is not recommended for use in patients with dementia-related psychosis and/or behavioural disturbances because of an increase in mortality and the risk of cerebrovascular accident. In placebo-controlled clinical trials (6-12 weeks duration) of elderly patients (mean age 78 years) with dementia-related psychosis and/or disturbed behaviours, there was a 2-fold increase in the incidence of death in olanzapine-treated patients compared to patients treated with placebo (3.5 % versus 1.5 %, respectively). The higher incidence of death was not associated with olanzapine dose (mean daily dose 4.4 mg) or duration of treatment. Risk factors that may predispose this patient population to increased mortality include age > 65 years, dysphagia, sedation, malnutrition and dehydration, pulmonary conditions (e.g., pneumonia, with or without aspiration), or concomitant use of benzodiazepines. However, the incidence of death was higher in olanzapine-treated than in placebo- treated patients independent of these risk factors.

In the same clinical trials, cerebrovascular adverse events (CVAE e.g., stroke, transient ischemic attack), including fatalities, were reported. There was a 3-fold increase in CVAE in patients treated with olanzapine compared to patients treated with placebo (1.3 % versus 0.4 %, respectively). All olanzapine and placebo-treated patients who experienced a cerebrovascular event had pre-existing risk factors. Age > 75 years and vascular/mixed type dementia were identified as risk factors for CVAE in association with olanzapine treatment. The efficacy of olanzapine was not established in these trials.

Parkinson's disease

The use of olanzapine in the treatment of dopamine agonist associated psychosis in patients with Parkinson's disease is not recommended.

In clinical trials, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo (see section 4.8), and olanzapine was not more effective than placebo in the treatment of psychotic symptoms.

In these trials, patients were initially required to be stable on the lowest effective dose of anti- Parkinsonian medicinal products (dopamine agonist) and to remain on the same anti-Parkinsonian medicinal products and dosages throughout the study. Olanzapine was started at 2.5 mg/day and titrated to a maximum of 15 mg/day based on investigator judgement.

Neuroleptic Malignant Syndrome (NMS)

NMS is a potentially life-threatening condition associated with antipsychotic medicinal products. Rare cases reported as NMS have also been received in association with olanzapine.

Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

If a patient develops signs and symptoms indicative of NMS, or presents with unexplained high fever without additional clinical manifestations of NMS, all antipsychotic medicines, including olanzapine must be discontinued.

Hyperglycaemia and diabetes

Hyperglycaemia and/or development or exacerbation of diabetes occasionally associated with ketoacidosis or coma has been reported uncommonly, including some fatal cases (see section 4.8). In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines, e.g. measuring of blood glucose at baseline, 12 weeks after starting olanzapine treatment and annually thereafter. Patients treated with any antipsychotic medicines, including olanzapine, should be observed for signs and symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia, and weakness) and patients with diabetes mellitus or with risk factors for diabetes mellitus should be monitored regularly for worsening of glucose control. Weight should be monitored regularly. , e.g. at baseline, 4, 8 and 12 weeks after starting olanzapine treatment and quarterly thereafter.

Lipid alterations

Undesirable alterations in lipids have been observed in olanzapine-treated patients in placebo- controlled clinical trials (see section 4.8). Lipid alterations should be managed as clinically appropriate, particularly in dyslipidemic patients and in patients with risk factors for the development of lipids disorders. Patients treated with any antipsychotic medicines, including olanzapine, should be monitored regularly for lipids in accordance with utilised antipsychotic guidelines e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Anticholinergic activity

While olanzapine demonstrated anticholinergic activity in vitro, experience during the clinical trials revealed a low incidence of related events. However, as clinical experience with olanzapine in patients with concomitant illness is limited, caution is advised when prescribing for patients with prostatic hypertrophy, or paralytic ileus and related conditions, e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Hepatic function

Transient, asymptomatic elevations of hepatic aminotransferases, alanine transferase (ALT), aspartate transferase (AST) have been seen commonly, especially in early treatment.

Caution should be exercised and follow-up organised in patients with elevated ALT and/or AST, in patients with signs and symptoms of hepatic impairment, in patients with pre-existing conditions associated with limited hepatic functional reserve, and in patients who are being treated with potentially hepatotoxic medicines.

In cases where hepatitis (including hepatocellular, cholestatic or mixed liver injury) has been diagnosed, olanzapine treatment should be discontinued.

Neutropenia

Caution should be exercised in patients with low leukocyte and/or neutrophil counts for any reason, in patients receiving medicines known to cause neutropenia, in patients with a history of drug-induced bone marrow depression/toxicity, in patients with bone marrow depression caused by concomitant illness, radiation therapy or chemotherapy and in patients with hypereosinophilic conditions or with myeloproliferative disease.

Neutropenia has been reported commonly when olanzapine and valproate are used concomitantly (see section 4.8).

Discontinuation of treatment

Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea, or vomiting have been reported rarely ≥ 0.01% and < 0.1%) when olanzapine is stopped abruptly.

QT interval

In clinical trials, clinically meaningful QTc prolongations (Fridericia QT correction [QTcF] ≥ 500 milliseconds [msec] at any time post baseline in patients with baseline QTcF < 500 msec) were uncommon (0.1 % to 1 %) in patients treated with olanzapine, with no significant differences in associated cardiac events compared to placebo. However, caution should be exercised when olanzapine is prescribed with medicines known to increase QTc interval, especially in the elderly, in patients with congenital long QT syndrome, congestive heart failure, heart hypertrophy, hypokalaemia or hypomagnesaemia.

Thromboembolism

Temporal association of olanzapine treatment and venous thromboembolism has been reported uncommonly (≥ 0.1% and < 1%). A causal relationship between the occurrence of venous thromboembolism and treatment with olanzapine has not been established. However, since patients with schizophrenia often present with acquired risk factors for venous thromboembolism all possible risk factors of VTE e.g. immobilisation of patients, should be identified and preventive measures undertaken.

General CNS activity

Given the primary CNS effects of olanzapine, caution should be used when it is taken in combination with other centrally acting medicines and alcohol. As it exhibits in vitro dopamine antagonism, olanzapine may antagonize the effects of direct and indirect dopamine agonists.

Seizures

Olanzapine should be used cautiously in patients who have a history of seizures or are subject to factors, which may lower the seizure threshold.

Seizures have been reported to occur uncommonly in patients when treated with olanzapine. In most of these cases, a history of seizures or risk factors for seizures were reported.

Tardive Dyskinesia

In comparator studies of one year or less duration, olanzapine was associated with a statistically significant lower incidence of treatment emergent dyskinesia. However the risk of tardive dyskinesia increases with long-term exposure, and therefore if signs or symptoms of tardive dyskinesia appear in a patient on olanzapine, a dose reduction or discontinuation should be considered. These symptoms can temporally deteriorate or even arise after discontinuation of treatment.

Postural hypotension

Postural hypotension was infrequently observed in the elderly in olanzapine clinical trials. It is recommended that blood pressure is measured periodically in patients over 65 years.

Sudden cardiac death

In postmarketing reports with olanzapine, the event of sudden cardiac death has been reported in patients with olanzapine. In a retrospective observational cohort study, the risk of presumed sudden cardiac death in patients treated with olanzapine was approximately twice the risk in patients not using antipsychotics. In the study, the risk of olanzapine was comparable to the risk of atypical antipsychotics included in a pooled analysis.

Paediatric population

Olanzapine is not indicated for use in the treatment of children and adolescents. Studies in patients aged 13-17 years showed various adverse reactions, including weight gain, changes in metabolic parameters and increases in prolactin levels (see sections 4.8 and 5.1).

Phenylalanine

Olanzapine Glenmark tablet contains aspartame, which is a source of phenylalanine. May be harmful for people with phenylketonuria.

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Potential interactions affecting olanzapine

Since olanzapine is metabolised by CYP1A2, substances that can specifically induce or inhibit this isoenzyme may affect the pharmacokinetics of olanzapine.

Induction of CYP1A2

The metabolism of olanzapine may be induced by smoking and carbamazepine, which may lead to reduced olanzapine concentrations. Only slight to moderate increase in olanzapine clearance has been observed. The clinical consequences are likely to be limited, but clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.2).

Inhibition of CYP1A2

Fluvoxamine, a specific CYP1A2 inhibitor, has been shown to significantly inhibit the metabolism of olanzapine. The mean increase in olanzapine Cmax following fluvoxamine was 54 % in female nonsmokers and 77 % in male smokers. The mean increase in olanzapine AUC was 52 % and 108 % respectively.

A lower starting dose of olanzapine should be considered in patients who are using fluvoxamine or any other CYP1A2 inhibitors, such as ciprofloxacin.

A decrease in the dose of olanzapine should be considered if treatment with an inhibitor of CYP1A2 is initiated.

Decreased bioavailability

Activated charcoal reduces the bioavailability of oral olanzapine by 50 to 60 % and should be taken at least 2 hours before or after olanzapine.

Fluoxetine (a CYP2D6 inhibitor), single doses of antacid (aluminium, magnesium) or cimetidine have not been found to significantly affect the pharmacokinetics of olanzapine.

Potential for olanzapine to affect other medicinal products

Olanzapine may antagonise the effects of direct and indirect dopamine agonists.

Olanzapine does not inhibit the main CYP450 isoenzymes in vitro (e.g. 1A2, 2D6, 2C9, 2C19, 3A4). Thus no particular interaction is expected as verified through in vivo studies where no inhibition of metabolism of the following active substances was found: tricyclic antidepressant (representing mostly CYP2D6 pathway), warfarin (CYP2C9), theophylline (CYP1A2) or diazepam (CYP3A4 and CYP2C19).

Olanzapine showed no interaction when co-administered with lithium or biperiden.

Therapeutic monitoring of valproate plasma levels did not indicate that valproate dosage adjustment is required after the introduction of concomitant olanzapine.

General CNS activity

Caution should be exercised in patients who consume alcohol or receive medicinal products that can cause central nervous system depression.

The concomitant use of olanzapine with anti-Parkinsonian medicinal products in patients with Parkinson's disease and dementia is not recommended (see section 4.4).

QTc interval

Caution should be used if olanzapine is being administered concomitantly with medicinal products known to increase QTc interval (see section 4.4).

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no adequate and well-controlled studies in pregnant women. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during treatment with olanzapine. Nevertheless, because human experience is limited, olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the foetus.

New born infants exposed to antipsychotics (including olanzapine) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully.

Breast feeding

In a study in breast- feeding, healthy women, olanzapine was excreted in breast milk. Mean infant exposure (mg/kg) at steady state was estimated to be 1.8 % of the maternal olanzapine dose (mg/kg). Patients should be advised not to breast- feed an infant if they are taking olanzapine.

Fertility

Effects on fertility are unknown (see section 5.3 for preclinical information).

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. Because olanzapine may cause somnolence and dizziness, patients should be cautioned about operating machinery, including motor vehicles.

4.8 Undesirable effects

Summary of the safety profile

Adults

The most frequently (seen in ≥ 1 % of patients) reported adverse reactions associated with the use of olanzapine in clinical trials were somnolence, weight gain, eosinophilia, elevated prolactin, cholesterol, glucose and triglyceride levels (see section 4.4), glucosuria, increased appetite, dizziness, akathisia, parkinsonism, leukopenia, neutropenia (see section 4.4), dyskinesia, orthostatic hypotension, anticholinergic effects, transient asymptomatic elevations of hepatic aminotransferases (see section 4.4), rash, asthenia, fatigue, pyrexia, arthralgia, increased alkaline phosphatase, high gamma glutamyltransferase, high uric acid, high creatine phosphokinase and oedema.

Tabulated list of adverse reactions

The following table lists the adverse reactions and laboratory investigations observed from spontaneous reporting and in clinical trials. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the data available).

 

Very

Common

Uncommon

Rare

Not

 

common

 

 

 

known

Blood and the

 

Eosinophilia

 

Thrombocytopenia11

 

lymphatic

 

Leukopenia10

 

 

 

system

 

Neutropenia10

 

 

 

disorders

 

 

 

 

 

Immune system

 

 

Hypersensitivity1

 

 

disorders

 

 

 

 

 

 

 

 

 

Metabolism

Weight gain

Elevated

Development or

Hypothermia12

 

and nutrition

cholesterol

exacerbation of

 

 

 

 

 

disorders

 

levels2,3

diabetes

 

 

 

 

 

occasionally

 

 

 

 

Elevated glucose

associated with

 

 

 

 

levels 4

ketoacidosis or

 

 

 

 

 

coma, including

 

 

 

 

Elevated

some fatal cases

 

 

 

 

triglyceride

(see section 4.4)

 

 

 

 

levels 2,5

 

 

 

 

Glucosuria

 

 

 

 

 

Increased appetite

 

 

 

 

 

 

 

 

 

Nervous system

Somnolence

Dizziness

Seizures where in

Neuroleptic

 

disorders

 

 

most cases a

malignant syndrome

 

 

 

Akathisia 6

history of

(see section 4.4)12

 

 

 

 

seizures or risk

Discontinuation

 

 

 

Parkinsonism 6

factors for

Symptoms 7, 12

 

 

 

 

seizures were

 

 

 

 

Dyskinesia 6

reported 11

 

 

 

 

 

Dystonia

 

 

 

 

 

(including

 

 

 

 

 

oculogyration)11

 

 

 

 

 

Tardive

 

 

 

 

 

dyskinesia11

 

 

 

 

 

Amnesia 9

 

 

 

 

 

Dysarthria

 

 

 

 

 

Restless legs

 

 

 

 

 

syndrome

 

 

Cardiac

 

 

Bradycardia

Ventricular

 

disorders

 

 

QTc prolongation

tachycardia/fibrillati

 

 

 

 

(see section 4.4)

on, sudden death

 

 

 

 

 

(see section 4.4)11

 

Vascular

Orthostatic

 

Thromboembolis

 

 

disorders

hypotension1

 

m (including

 

 

 

 

pulmonary

 

 

 

 

 

 

 

 

 

 

embolism and

 

 

 

 

 

deep vein

 

 

 

 

 

thrombosis) (see

 

 

 

 

 

section 4.4)

 

 

Respiratory,

 

 

Epistaxis9

 

 

thoracic and

 

 

 

 

 

mediastinal

 

 

 

 

 

disorders

 

 

 

 

 

Gastrointestina

 

Mild, transient

Abdominal

Pancreatitis11

 

l disorders

 

anticholinergic

distension9

 

 

 

 

effects including

 

 

 

 

 

constipation and

 

 

 

 

 

dry mouth

 

 

 

Hepatobiliary

 

Transient,

 

Hepatitis (including

 

disorders

 

asymptomatic

 

hepatocellular,

 

 

 

elevations of

 

cholestatic or

 

 

 

hepatic

 

mixed

 

 

 

aminotransferase

 

liver injury)11

 

 

 

s (ALT, AST),

 

 

 

 

 

especially in

 

 

 

 

 

early treatment

 

 

 

 

 

(see

 

 

 

 

 

section 4.4)

 

 

 

Skin and

 

Rash

Photosensitivity

 

Drug

subcutaneous

 

 

reaction

 

reaction

tissue disorders

 

 

 

 

with

 

 

 

Alopecia

 

Eosinophi

 

 

 

 

 

lia and

 

 

 

 

 

Systemic

 

 

 

 

 

Symptom

 

 

 

 

 

s

 

 

 

 

 

(DRESS)

Musculoskeleta

 

Arthralgia9

 

Rhabdomyolysis11

 

l and

 

 

 

 

 

connective

 

 

 

 

 

tissue disorders

 

 

 

 

 

Renal and

 

 

Urinary

 

 

urinary

 

 

incontinence

 

 

disorders

 

 

Urinary retention

 

 

 

 

 

Urinary

 

 

 

 

 

hesitation11

 

 

Pregnancy,

 

 

 

 

Drug

puerperium

 

 

 

 

withdraw

and perinatal

 

 

 

 

al

conditions

 

 

 

 

syndrome

 

 

 

 

 

neonatal

 

 

 

 

 

(see

 

 

 

 

 

section

 

 

 

 

 

4.6)

Reproductive

 

Erectile

Amenorrhea

Priapism12

 

system and

 

dysfunction in

Breast

 

 

breast

 

males

enlargement

 

 

disorders

 

 

Galactorrhea in

 

 

 

 

Decreased libido

females

 

 

 

 

in males and

Gymnaecomastia/

 

 

 

 

females

breast

 

 

 

 

 

enlargement in

 

 

 

 

 

males

 

 

General

 

Asthenia

 

 

 

disorders and

 

Fatigue

 

 

 

administration

 

Oedema

 

 

 

site conditions

 

Pyrexia10

 

 

 

Investigations

Elevated

Increased alkaline

Increased total

 

 

 

plasma

phosphatase10

bilirubin

 

 

 

prolactin

High creatine

 

 

 

 

levels 8

phosphokinase11

 

 

 

 

 

High Gamma

 

 

 

 

 

Glutamyltransfera

 

 

 

 

 

se 10

 

 

 

 

 

High uric acid 10

 

 

 

1Clinically significant weight gain was observed across all baseline Body Mass Index (BMI) categories. Following short term treatment (median duration 47 days), weight gain ≥ 7 % of baseline body weight was very common (22.2%), ≥ 15% was common (4.2%) and ≥25% was uncommon

(0.8%). Patients gaining ≥7%, ≥15% and ≥25% of their baseline body weight with long-term exposure (at least 48 weeks) were very common (64.4 %, 31.7 % and 12.3 % respectively).

2Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline.

3Observed for fasting normal levels at baseline (< 5.17 mmol/l) which increased to high

(≥ 6.2 mmol/l). Changes in total fasting cholesterol levels from borderline at baseline (≥ 5.17- < 6.2 mmol/l) to high (≥ 6.2 mmol/l) were very common.

4Observed for fasting normal levels at baseline (< 5.56 mmol/l) which increased to high (≥ 7 mmol/l). Changes in fasting glucose from borderline at baseline (≥ 5.56 - < 7 mmol/l) to high (≥ 7 mmol/l) were very common.

5Observed for fasting normal levels at baseline (< 1.69 mmol/l) which increased to high

(≥ 2.26 mmol/l). Changes in fasting triglycerides from borderline at baseline (≥ 1.69 mmol/l - < 2.26 mmol/l) to high (≥ 2.26 mmol/l) were very common.

6In clinical trials, the incidence of Parkinsonism and dystonia in olanzapine-treated patients was numerically higher, but not statistically significantly different from placebo. Olanzapine-treated patients had a lower incidence of Parkinsonism, akathisia and dystonia compared with titrated doses of haloperidol. In the absence of detailed information on the pre-existing history of individual acute and tardive extrapyramidal movement disorders, it cannot be concluded at present that olanzapine produces less tardive dyskinesia and/or other tardive extrapyramidal syndromes.

7Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea and vomiting have been reported when olanzapine is stopped abruptly.

8In clinical trials of up to 12 weeks, plasma prolactin concentrations exceeded the upper limit of normal range in approximately 30% of olanzapine treated patients with normal baseline prolactin value. In the majority of these patients the elevations were generally mild, and remained below two times the upper limit of normal range.

9Adverse event identified from clinical trials in the Olanzapine Integrated Database.

10As assessed by measured values from clinical trials in the Olanzapine Integrated Database.

11Adverse event identified from spontaneous post-marketing reporting with frequency determined utilising the Olanzapine Integrated Database.

12Adverse event identified from spontaneous post-marketing reporting with frequency estimated at the upper limit of the 95% confidence interval utilising the Olanzapine Integrated Database.

Long-term exposure (at least 48 weeks)

The proportion of patients who had adverse, clinically significant changes in weight gain, glucose, total/LDL/HDL cholesterol or triglycerides increased over time. In adult patients who completed 9-12 months of therapy, the rate of increase in mean blood glucose slowed after approximately 6 months.

Additional information on special populations

In clinical trials in elderly patients with dementia, olanzapine treatment was associated with a higher incidence of death and cerebrovascular adverse reactions compared to placebo (see section 4.4). Very common adverse reactions associated with the use of olanzapine in this patient group were abnormal gait and falls. Pneumonia, increased body temperature, lethargy, erythema, visual hallucinations and urinary incontinence were observed commonly.

In clinical trials in patients with drug-induced (dopamine agonist) psychosis associated with

Parkinson’s disease, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo.

In one clinical trial in patients with bipolar mania, valproate combination therapy with olanzapine resulted in an incidence of neutropenia of 4.1 %; a potential contributing factor could be high plasma valproate levels. Olanzapine administered with lithium or valproate resulted in increased levels

(≥ 10 %) of tremor, dry mouth, increased appetite, and weight gain. Speech disorder was also reported commonly. During treatment with olanzapine in combination with lithium or divalproex, an increase of ≥ 7 % from baseline body weight occurred in 17.4 % of patients during acute treatment (up to 6 weeks). Long-term olanzapine treatment (up to 12 months) for recurrence prevention in patients with bipolar disorder was associated with an increase of ≥ 7 % from baseline body weight in 39.9 % of patients.

Paediatric population

Olanzapine is not indicated for the treatment of children and adolescent patients below 18 years. Although no clinical studies designed to compare adolescents to adults have been conducted, data from the adolescent trials were compared to those of the adult trials.

The following table summarises the adverse reactions reported with a greater frequency in adolescent patients (aged 13-17 years) than in adult patients or adverse reactions only identified during short- term clinical trials in adolescent patients. Clinically significant weight gain (≥ 7 %) appears to occur more frequently in the adolescent population compared to adults with comparable exposures. The magnitude of weight gain and the proportion of adolescent patients who had clinically significant weight gain were greater with long-term exposure (at least 24 weeks) than with short-term exposure.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10).

Metabolism and nutrition disorders

Very common: Weight gain 13, elevated triglyceride levels 14, increased appetite. Common: Elevated cholesterol levels 15

Nervous system disorders

Very common: Sedation (including: hypersomnia, lethargy, somnolence).

Gastrointestinal disorders

Common: Dry mouth

Hepatobiliary disorders

Very common: Elevations of hepatic aminotransferases (ALT/AST; see section 4.4).

Investigations

Very common: Decreased total bilirubin, increased GGT, elevated plasma prolactin levels 16

13Following short term treatment (median duration 22 days), weight gain ≥ 7 % of baseline body weight (kg) was very common (40.6 %), ≥ 15 %of baseline body weight was common (7.1 %) and ≥

25% was common (2.5 %). With long-term exposure (at least 24 weeks), 89.4 % gained ≥ 7 %, 55.3 % gained ≥ 15 % and 29.1 % gained ≥ 25% of their baseline body weight.

14Observed for fasting normal levels at baseline (< 1.016 mmol/l) which increased to high

(≥ 1.467 mmol/l) and changes in fasting triglycerides from borderline at baseline (≥ 1.016 mmol/l - < 1.467 mmol/l) to high (≥ 1.467 mmol/l).

15 Changes in total fasting cholesterol levels from normal at baseline (< 4.39 mmol/l) to high

(≥ 5.17 mmol/l) were observed commonly. Changes in total fasting cholesterol levels from borderline at baseline (≥ 4.39 - < 5.17 mmol/l) to high (≥ 5.17 mmol/l) were very common.

16 Elevated plasma prolactin levels were reported in 47.4 % of adolescent patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Signs and symptoms

Very common symptoms in overdose (> 10 % incidence) include tachycardia, agitation/ aggressiveness, dysarthria, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Other medically significant sequelae of overdose include delirium, convulsion, coma, possible neuroleptic malignant syndrome, respiratory depression, aspiration, hypertension or hypotension, cardiac arrhythmias (< 2 % of overdose cases) and cardiopulmonary arrest. Fatal outcomes have been reported for acute overdoses as low as 450 mg but survival has also been reported following acute overdose of approximately 2 g of oral olanzapine.

Management

There is no specific antidote for olanzapine. Induction of emesis is not recommended. Standard procedures for management of overdose may be indicated (i.e. gastric lavage, administration of activated charcoal). The concomitant administration of activated charcoal was shown to reduce the oral bioavailability of olanzapine by 50 to 60 %.

Symptomatic treatment and monitoring of vital organ function should be instituted according to clinical presentation, including treatment of hypotension and circulatory collapse and support of respiratory function.

Do not use epinephrine, dopamine, or other sympathomimetic agents with beta-agonist activity since beta stimulation may worsen hypotension. Cardiovascular monitoring is necessary to detect possible arrhythmias. Close medical supervision and monitoring should continue until the patient recovers.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: psycholeptics, diazepines, oxazepines, thiazepines and oxepines, ATC code N05A H03.3

Pharmacodynamic effects

Olanzapine is an antipsychotic, antimanic and mood stabilising agent that demonstrates a broad pharmacologic profile across a number of receptor systems.

In preclinical studies, olanzapine exhibited a range of receptor affinities (Ki < 100 nM) for serotonin

5HT2A/2C, 5HT3, 5HT6; dopamine D1, D2, D3, D4, D5; cholinergic muscarinic receptors M1-M5;

α 1 adrenergic; and histamine H1 receptors. Animal behavioural studies with olanzapine indicated 5HT, dopamine, and cholinergic antagonism, consistent with the receptor-binding profile. Olanzapine demonstrated a greater in vitro affinity for serotonin 5HT2 than dopamine D2 receptors and greater 5HT2 than D2 activity in vivo, models. Electrophysiological studies demonstrated that olanzapine selectively reduced the firing of mesolimbic (A10) dopaminergic neurons, while having little effect on the striatal (A9) pathways involved in motor function. Olanzapine reduced a conditioned avoidance response, a test indicative of antipsychotic activity, at doses below those producing catalepsy, an effect indicative of motor side-effects. Unlike some other antipsychotic agents, olanzapine increases responding in an “anxiolytic” test.

In a single oral dose (10 mg) Positron Emission Tomography (PET) study in healthy volunteers, olanzapine produced a higher 5HT2A than dopamine D2 receptor occupancy. In addition, a Single Photon Emission Computed Tomography (SPECT) imaging study in schizophrenic patients revealed that olanzapine-responsive patients had lower striatal D2 occupancy than some other antipsychotic and risperidone-responsive patients, while being comparable to clozapine-responsive patients.

Clinical efficacy

In two of two placebo and two of three comparator controlled trials with over 2,900 schizophrenic patients presenting with both positive and negative symptoms, olanzapine was associated with statistically significantly greater improvements in negative as well as positive symptoms.

In a multinational, double-blind, comparative study of schizophrenia, schizoaffective, and related disorders which included 1,481 patients with varying degrees of associated depressive symptoms (baseline mean of 16.6 on the Montgomery-Asberg Depression Rating Scale), a prospective secondary analysis of baseline to endpoint mood score change demonstrated a statistically significant improvement (p= 0.001) favouring olanzapine (- 6.0) versus haloperidol (- 3.1).

In patients with a manic or mixed episode of bipolar disorder, olanzapine demonstrated superior efficacy to placebo and valproate semisodium (divalproex) in reduction of manic symptoms over 3 weeks. Olanzapine also demonstrated comparable efficacy results to haloperidol in terms of the

proportion of patients in symptomatic remission from mania and depression at 6 and 12 weeks. In a co-therapy study of patients treated with lithium or valproate for a minimum of 2 weeks, the addition of olanzapine 10 mg (co-therapy with lithium or valproate) resulted in a greater reduction in symptoms of mania than lithium or valproate monotherapy after 6 weeks.

In a 12-month recurrence prevention study in manic episode patients who achieved remission on olanzapine and were then randomised to olanzapine or placebo, olanzapine demonstrated statistically significant superiority over placebo on the primary endpoint of bipolar recurrence. Olanzapine also showed a statistically significant advantage over placebo in terms of preventing either recurrence into mania or recurrence into depression.

In a second 12-month recurrence prevention study in manic episode patients who achieved remission with a combination of olanzapine and lithium and were then randomised to olanzapine or lithium alone, olanzapine was statistically non-inferior to lithium on the primary endpoint of bipolar recurrence (olanzapine 30.0 %, lithium 38.3 %; p = 0.055).

In an 18-month co-therapy study in manic or mixed episode patients stabilised with olanzapine plus a mood stabiliser (lithium or valproate), long-term olanzapine co-therapy with lithium or valproate was not statistically significantly superior to lithium or valproate alone in delaying bipolar recurrence, defined according to syndromic (diagnostic) criteria.

Paediatric population

Controlled efficacy data in adolescents (ages 13 to 17 years) are limited to short term studies in schizophrenia (6 weeks) and mania associated with bipolar I disorder (3 weeks), involving less than 200 adolescents. Olanzapine was used as a flexible dose starting with 2.5 and ranging up to

20 mg/day. During treatment with olanzapine, adolescents gained significantly more weight compared with adults. The magnitude of changes in fasting total cholesterol, LDL cholesterol, triglycerides, and prolactin (see sections 4.4 and 4.8) were greater in adolescents than in adults. There are no controlled data on maintenance of effect or long term safety (see sections 4.4 and 4.8). Information on long term safety is primarily limited to open-label, uncontrolled data.

5.2 Pharmacokinetic properties

Absorption

Olanzapine is well absorbed after oral administration, reaching peak plasma concentrations within 5 to 8 hours. The absorption is not affected by food. Absolute oral bioavailability relative to intravenous administration has not been determined.

Distribution

The plasma protein binding of Olanzapine was about 93 % over the concentration range of about 7 to about 1000 ng/ml. Olanzapine is bound predominantly to albumin and α1-acid-glycoprotein.

Biotransformation

Olanzapine is metabolized in the liver by conjugative and oxidative pathways. The major circulating metabolite is the 10-N-glucuronide, which does not pass the blood brain barrier. Cytochromes P450-CYP1A2 and P450-CYP2D6 contribute to the formation of the N-desmethyl and 2-hydroxymethyl metabolites, both exhibited significantly less in vivo pharmacological activity than olanzapine in animal studies. The predominant pharmacologic activity is from the parent olanzapine.

Elimination

After oral administration, the mean terminal elimination half-life of olanzapine in healthy subjects varied on the basis of age and gender.

In healthy elderly (65 and over) versus non-elderly subjects, the mean elimination half-life was prolonged (51.8 versus 33.8 hr) and the clearance was reduced (17.5 versus 18.2 l/hr). The pharmacokinetic variability observed in the elderly is within the range for the non-elderly. In 44 patients with schizophrenia > 65 years of age, dosing from 5 to 20 mg/day was not associated with any distinguishing profile of adverse events.

In female versus male subjects the mean elimination half life was somewhat prolonged (36.7 versus 32.3 hrs) and the clearance was reduced (18.9 versus 27.3 l/hr). However, olanzapine (5-20 mg) demonstrated a comparable safety profile in female (n = 467) as in male patients (n = 869).

Renal impairment

In renally impaired patients (creatinine clearance < 10 ml/min) versus healthy subjects, there was no significant difference in mean elimination half-life (37.7 versus 32.4 hr) or clearance (21.2 versus 25.0 l/hr). A mass balance study showed that approximately 57 % of radiolabelled olanzapine

appeared in urine, principally as metabolites.

Smokers

In smoking subjects with mild hepatic dysfunction, mean elimination half-life (39.3 hr) was prolonged and clearance (18.0 l/hr) was reduced analogous to non-smoking healthy subjects (48.8 hr and

14.1 l/hr, respectively).

In non-smoking versus smoking subjects (males and females) the mean elimination half-life was prolonged (38.6 versus 30.4 hr) and the clearance was reduced (18.6 versus 27.7 l/hr).

The plasma clearance of olanzapine is lower in elderly versus young subjects, in females versus males, and in non-smokers versus smokers. However, the magnitude of the impact of age, gender, or smoking on olanzapine clearance and half-life is small in comparison to the overall variability between individuals.

In a study of Caucasians, Japanese, and Chinese subjects, there were no differences in the pharmacokinetic parameters among the three populations.

Paediatric population Adolescents (ages 13 to 17 years):

The pharmacokinetics of olanzapine are similar between adolescents and adults. In clinical studies, the average olanzapine exposure was approximately 27 % higher in adolescents. Demographic differences between the adolescents and adults include a lower average body weight and fewer adolescents were smokers. Such factors possibly contribute to the higher average exposure observed in adolescents.

5.3 Preclinical safety data

Acute (single-dose) toxicity

Signs of oral toxicity in rodents were characteristic of potent neuroleptic compounds: hypoactivity, coma, tremors, clonic convulsions, salivation, and depressed weight gain. The median lethal doses were approximately 210 mg/kg (mice) and 175 mg/kg (rats).

Dogs tolerated single oral doses up to 100 mg/kg without mortality. Clinical signs included sedation, ataxia, tremors, increased heart rate, labored respiration, miosis, and anorexia. In monkeys, single oral doses up to 100 mg/kg resulted in prostration and, at higher doses, semi-consciousness.

Repeated-dose toxicity

In studies up to 3 months duration in mice and up to 1 year in rats and dogs, the predominant effects were CNS depression, anticholinergic effects, and peripheral haematological disorders. Tolerance developed to the CNS depression. Growth parameters were decreased at high doses. Reversible effects consistent with elevated prolactin in rats included decreased weights of ovaries and uterus and morphologic changes in vaginal epithelium and in mammary gland.

Haematologic toxicity

Effects on haematology parameters were found in each species, including dose-related reductions in circulating leukocytes in mice and non-specific reductions of circulating leukocytes in rats; however, no evidence of bone marrow cytotoxicity was found.

Reversible neutropenia, thrombocytopenia, or anaemia developed in a few dogs treated with 8 or 10 mg/kg/day (total olanzapine exposure [AUC] is 12- to 15-fold greater than that of a man given a

12-mg dose). In cytopenic dogs, there were no adverse events on progenitor and proliferating cells in the bone marrow.

Reproductive toxicity

Olanzapine had no teratogenic effects. Sedation affected mating performance of male rats. Estrous

cycles were affected at doses of 1.1 mg/kg (3 times the maximum human dose) and reproduction parameters were influenced in rats given 3 mg/kg (9 times the maximum human dose).

In the offspring of rats given olanzapine, delays in foetal development and transient decreases in offspring activity levels were seen.

Mutagenicity

Olanzapine was not mutagenic or clastogenic in a full range of standard tests, which included bacterial mutation tests and in vitro and in vivo mammalian tests.

Carcinogenicity

Based on the results of studies in mice and rats, it was concluded that olanzapine is not carcinogenic.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Mannitol E 421

Microcrystalline cellulose

Aspartame E 951

Crospovidone

Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months

6.4 Special precautions for storage

Store below 30 C

6.5 Nature and contents of container

Aluminium/aluminium blisters in cartons of 28, 56, 70, 98 tablets per carton.

Not all pack sizes may be marketed

6.6 Special precautions for disposal

No special requirements

7. MARKETING AUTHORISATION HOLDER

Glenmark Pharmaceuticals Europe Limited

Laxmi House

2-B Draycott Avenue

Kenton

Harrow

Middlesex

HA3 OBU

United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/587/004

EU/1/09/587/005

EU/1/09/587/006

EU/1/09/587/021

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 03 December 2009

Date of latest renewal: 19 August 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu

1. NAME OF THE MEDICINAL PRODUCT

Olanzapine Glenmark 7.5 mg tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 7.5 mg olanzapine.

Excipient with known effect: Each tablet contains 0.35 mg of aspartame

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Tablet

Yellow coloured circular flat bevelled edge tablets with ‘C’ debossed on one side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Adults

Olanzapine is indicated for the treatment of schizophrenia.

Olanzapine is effective in maintaining the clinical improvement during continuation therapy in patients who have shown an initial treatment response.

Olanzapine is indicated for the treatment of moderate to severe manic episode.

In patients whose manic episode has responded to olanzapine treatment, olanzapine is indicated for the prevention of recurrence in patients with bipolar disorder (see section 5.1).

4.2 Posology and method of administration

Adults

Schizophrenia: The recommended starting dose for olanzapine is 10 mg/day.

Manic episode: The starting dose is 15 mg as a single daily dose in monotherapy or 10 mg daily in combination therapy (see section 5.1).

Preventing recurrence in bipolar disorder: The recommended starting dose is 10 mg/day. For patients who have been receiving olanzapine for treatment of manic episode, continue therapy for preventing recurrence at the same dose. If a new manic, mixed, or depressive episode occurs, olanzapine treatment should be continued (with dose optimisation as needed), with supplementary therapy to treat mood symptoms, as clinically indicated.

During treatment for schizophrenia, manic episode and recurrence prevention in bipolar disorder, daily dosage may subsequently be adjusted on the basis of individual clinical status within the range 5-20 mg/day. An increase to a dose greater than the recommended starting dose is advised only after appropriate clinical reassessment and should generally occur at intervals of not less than 24 hours. Olanzapine can be given without regards for meals as absorption is not affected by food. Gradual tapering of the dose should be considered when discontinuing olanzapine.

Special populations

Elderly patients

A lower starting dose (5 mg/day) is not routinely indicated but should be considered for those 65 and over when clinical factors warrant (see section 4.4).

Patients with renal and/or hepatic impairment

A lower starting dose (5 mg) should be considered for such patients. In cases of moderate hepatic insufficiency (cirrhosis, Child-Pugh Class A or B), the starting dose should be 5 mg and only increased with caution.

Smokers

The starting dose and dose range need not be routinely altered for non-smokers relative to smokers. The metabolism of olanzapine may be induced by smoking. Clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.5).

When more than one factor is present which might result in slower metabolism (female gender, geriatric age, non-smoking status), consideration should be given to decreasing the starting dose. Dose escalation, when indicated, should be conservative in such patients (See sections 4.5 and 5.2).

Paediatric population

Olanzapine is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy. A greater magnitude of weight gain, lipid and prolactin alterations has been reported in short term studies of adolescent patients than in studies of adult patients (see sections 4.4, 4.8, 5.1 and 5.2).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. Patients with known risk of narrow-angle glaucoma.

4.4 Special warnings and precautions for use

During antipsychotic treatment, improvement in the patient's clinical condition may take several days to some weeks. Patients should be closely monitored during this period.

Dementia-related psychosis and/or behavioural disturbances

Olanzapine is not recommended for use in patients with dementia-related psychosis and/or behavioural disturbances because of an increase in mortality and the risk of cerebrovascular accident. In placebo-controlled clinical trials (6-12 weeks duration) of elderly patients (mean age 78 years) with dementia-related psychosis and/or disturbed behaviours, there was a 2-fold increase in the incidence of death in olanzapine-treated patients compared to patients treated with placebo (3.5 % versus 1.5 %, respectively). The higher incidence of death was not associated with olanzapine dose (mean daily dose 4.4 mg) or duration of treatment. Risk factors that may predispose this patient population to increased mortality include age > 65 years, dysphagia, sedation, malnutrition and dehydration, pulmonary conditions (e.g., pneumonia, with or without aspiration), or concomitant use of benzodiazepines. However, the incidence of death was higher in olanzapine-treated than in placebo- treated patients independent of these risk factors.

In the same clinical trials, cerebrovascular adverse events (CVAE e.g., stroke, transient ischemic attack), including fatalities, were reported. There was a 3-fold increase in CVAE in patients treated with olanzapine compared to patients treated with placebo (1.3 % versus 0.4 %, respectively). All olanzapine and placebo-treated patients who experienced a cerebrovascular event had pre-existing risk factors. Age > 75 years and vascular/mixed type dementia were identified as risk factors for CVAE in association with olanzapine treatment. The efficacy of olanzapine was not established in these trials.

Parkinson's disease

The use of olanzapine in the treatment of dopamine agonist associated psychosis in patients with Parkinson's disease is not recommended. In clinical trials, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo (see section 4.8), and olanzapine was not more effective than placebo in the treatment of psychotic symptoms. In these trials, patients were initially required to be stable on the lowest effective dose of anti- Parkinsonian medicinal products (dopamine agonist) and to remain on the same anti-Parkinsonian medicinal products and dosages throughout the study. Olanzapine was started at 2.5 mg/day and titrated to a maximum of 15 mg/day based on investigator judgement.

Neuroleptic Malignant Syndrome (NMS)

NMS is a potentially life-threatening condition associated with antipsychotic medicinal products. Rare cases reported as NMS have also been received in association with olanzapine. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure. If a patient develops signs and symptoms indicative of NMS, or presents with unexplained high fever without additional clinical manifestations of NMS, all antipsychotic medicines, including olanzapine must be discontinued.

Hyperglycaemia and diabetes

Hyperglycaemia and/or development or exacerbation of diabetes occasionally associated with ketoacidosis or coma has been reported uncommonly, including some fatal cases (see section 4.8). In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines, e.g. measuring of blood glucose at baseline, 12 weeks after starting olanzapine treatment and annually thereafter. . Patients treated with any antipsychotic medicines, including olanzapine, should be observed for signs and symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia, and weakness) and patients with diabetes mellitus or with risk factors for diabetes mellitus should be monitored regularly for worsening of glucose control. Weight should be monitored regularly. , e.g. at baseline, 4, 8 and 12 weeks after starting olanzapine treatment and quarterly thereafter.

Lipid alterations

Undesirable alterations in lipids have been observed in olanzapine-treated patients in placebo- controlled clinical trials (see section 4.8). Lipid alterations should be managed as clinically appropriate, particularly in dyslipidemic patients and in patients with risk factors for the development of lipids disorders. Patients treated with any antipsychotic medicines, including olanzapine, should be monitored regularly for lipids in accordance with utilised antipsychotic guidelines e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Anticholinergic activity

While olanzapine demonstrated anticholinergic activity in vitro, experience during the clinical trials revealed a low incidence of related events. However, as clinical experience with olanzapine in patients with concomitant illness is limited, caution is advised when prescribing for patients with prostatic hypertrophy, or paralytic ileus and related conditions.

Hepatic function

Transient, asymptomatic elevations of hepatic aminotransferases, alanine transferase (ALT), aspartate transferase (AST) have been seen commonly, especially in early treatment. Caution should be exercised and follow-up organised in patients with elevated ALT and/or AST, in patients with signs and symptoms of hepatic impairment, in patients with pre-existing conditions associated with limited hepatic functional reserve, and in patients who are being treated with potentially hepatotoxic medicines. In cases where hepatitis (including hepatocellular, cholestatic or mixed liver injury) has been diagnosed, olanzapine treatment should be discontinued.

Neutropenia

Caution should be exercised in patients with low leukocyte and/or neutrophil counts for any reason, in patients receiving medicines known to cause neutropenia, in patients with a history of drug-induced bone marrow depression/toxicity, in patients with bone marrow depression caused by concomitant illness, radiation therapy or chemotherapy and in patients with hypereosinophilic conditions or with myeloproliferative disease. Neutropenia has been reported commonly when olanzapine and valproate are used concomitantly (see section 4.8).

Discontinuation of treatment

Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea, or vomiting have been reported rarely ≥0.01% and < 0.1%) when olanzapine is stopped abruptly.

QT interval

In clinical trials, clinically meaningful QTc prolongations (Fridericia QT correction [QTcF] ≥ 500 milliseconds [msec] at any time post baseline in patients with baseline QTcF < 500 msec) were uncommon (0.1 % to 1 %) in patients treated with olanzapine, with no significant differences in associated cardiac events compared to placebo. However, caution should be exercised when olanzapine is prescribed with medicines known to increase QTc interval, especially in the elderly, in patients with congenital long QT syndrome, congestive heart failure, heart hypertrophy, hypokalaemia or hypomagnesaemia.

Thromboembolism

Temporal association of olanzapine treatment and venous thromboembolism has been reported uncommonly (≥ 0.1% and < 1%). A causal relationship between the occurrence of venous thromboembolism and treatment with olanzapine has not been established. However, since patients with schizophrenia often present with acquired risk factors for venous thromboembolism all possible risk factors of VTE e.g. immobilisation of patients, should be identified and preventive measures undertaken.

General CNS activity

Given the primary CNS effects of olanzapine, caution should be used when it is taken in combination with other centrally acting medicines and alcohol. As it exhibits in vitro dopamine antagonism, olanzapine may antagonize the effects of direct and indirect dopamine agonists.

Seizures

Olanzapine should be used cautiously in patients who have a history of seizures or are subject to factors, which may lower the seizure threshold.

Seizures have been reported to occur uncommonly in patients when treated with olanzapine. In most of these cases, a history of seizures or risk factors for seizures were reported.

Tardive Dyskinesia

In comparator studies of one year or less duration, olanzapine was associated with a statistically significant lower incidence of treatment emergent dyskinesia. However the risk of tardive dyskinesia increases with long-term exposure, and therefore if signs or symptoms of tardive dyskinesia appear in a patient on olanzapine, a dose reduction or discontinuation should be considered. These symptoms can temporally deteriorate or even arise after discontinuation of treatment.

Postural hypotension

Postural hypotension was infrequently observed in the elderly in olanzapine clinical trials. It is recommended that blood pressure is measured periodically in patients over 65 years.

Sudden cardiac death

In postmarketing reports with olanzapine, the event of sudden cardiac death has been reported in patients with olanzapine. In a retrospective observational cohort study, the risk of presumed sudden cardiac death in patients treated with olanzapine was approximately twice the risk in patients not

using antipsychotics. In the study, the risk of olanzapine was comparable to the risk of atypical antipsychotics included in a pooled analysis.

Paediatric population

Olanzapine is not indicated for use in the treatment of children and adolescents. Studies in patients aged 13-17 years showed various adverse reactions, including weight gain, changes in metabolic parameters and increases in prolactin levels (see sections 4.8 and 5.1).

Phenylalanine

Olanzapine Glenmark tablet contains aspartame, which is a source of phenylalanine. May be harmful for people with phenylketonuria.

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Potential interactions affecting olanzapine

Since olanzapine is metabolised by CYP1A2, substances that can specifically induce or inhibit this isoenzyme may affect the pharmacokinetics of olanzapine.

Induction of CYP1A2

The metabolism of olanzapine may be induced by smoking and carbamazepine, which may lead to reduced olanzapine concentrations. Only slight to moderate increase in olanzapine clearance has been observed. The clinical consequences are likely to be limited, but clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.2).

Inhibition of CYP1A2

Fluvoxamine, a specific CYP1A2 inhibitor, has been shown to significantly inhibit the metabolism of olanzapine. The mean increase in olanzapine Cmax following fluvoxamine was 54 % in female nonsmokers and 77 % in male smokers. The mean increase in olanzapine AUC was 52 % and 108 % respectively. A lower starting dose of olanzapine should be considered in patients who are using fluvoxamine or any other CYP1A2 inhibitors, such as ciprofloxacin. A decrease in the dose of olanzapine should be considered if treatment with an inhibitor of CYP1A2 is initiated.

Decreased bioavailability

Activated charcoal reduces the bioavailability of oral olanzapine by 50 to 60 % and should be taken at least 2 hours before or after olanzapine.

Fluoxetine (a CYP2D6 inhibitor), single doses of antacid (aluminium, magnesium) or cimetidine have not been found to significantly affect the pharmacokinetics of olanzapine.

Potential for olanzapine to affect other medicinal products

Olanzapine may antagonise the effects of direct and indirect dopamine agonists.

Olanzapine does not inhibit the main CYP450 isoenzymes in vitro (e.g. 1A2, 2D6, 2C9, 2C19, 3A4). Thus no particular interaction is expected as verified through in vivo studies where no inhibition of metabolism of the following active substances was found: tricyclic antidepressant (representing mostly CYP2D6 pathway), warfarin (CYP2C9), theophylline (CYP1A2) or diazepam (CYP3A4 and CYP2C19).

Olanzapine showed no interaction when co-administered with lithium or biperiden.

Therapeutic monitoring of valproate plasma levels did not indicate that valproate dosage adjustment is required after the introduction of concomitant olanzapine.

General CNS activity

Caution should be exercised in patients who consume alcohol or receive medicinal products that can cause central nervous system depression.

The concomitant use of olanzapine with anti-Parkinsonian medicinal products in patients with Parkinson's disease and dementia is not recommended (see section 4.4).

QTc interval

Caution should be used if olanzapine is being administered concomitantly with medicinal products known to increase QTc interval (see section 4.4).

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no adequate and well-controlled studies in pregnant women. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during treatment with olanzapine. Nevertheless, because human experience is limited, olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the foetus.

New born infants exposed to antipsychotics (including olanzapine) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully.

Breast feeding

In a study in breast- feeding, healthy women, olanzapine was excreted in breast milk. Mean infant exposure (mg/kg) at steady state was estimated to be 1.8 % of the maternal olanzapine dose (mg/kg).

Patients should be advised not to breast- feed an infant if they are taking olanzapine.

Fertility

Effects on fertility are unknown (see section 5.3 for preclinical information).

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. Because olanzapine may cause somnolence and dizziness, patients should be cautioned about operating machinery, including motor vehicles.

4.8 Undesirable effects

Summary of the safety profile

Adults

The most frequently (seen in ≥ 1 % of patients) reported adverse reactions associated with the use of olanzapine in clinical trials were somnolence, weight gain, eosinophilia, elevated prolactin, cholesterol, glucose and triglyceride levels (see section 4.4), glucosuria, increased appetite, dizziness, akathisia, parkinsonism, leukopenia, neutropenia (see section 4.4), dyskinesia, orthostatic hypotension, anticholinergic effects, transient asymptomatic elevations of hepatic aminotransferases (see section 4.4), rash, asthenia, fatigue, pyrexia, arthralgia, increased alkaline phosphatase, high gamma glutamyltransferase, high uric acid, high creatine phosphokinase and oedema.

Tabulated list of adverse reactions

The following table lists the adverse reactions and laboratory investigations observed from spontaneous reporting and in clinical trials. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very

common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the data available).

 

Very

Common

Uncommon

Rare

Not

 

commo

 

 

 

known

 

n

 

 

 

 

Blood and

 

Eosinophilia

 

Thrombocytopenia

 

the

 

Leukopenia10

 

 

lymphatic

 

Neutropenia10

 

 

 

system

 

 

 

 

 

disorders

 

 

 

 

 

Immune

 

 

 

Allergic reaction

 

system

 

 

 

 

 

disorders

 

 

 

 

 

Metabolism

Weight

Elevated

Development or

Hypothermia12

 

and

gain1

cholesterol

exacerbation of

 

 

nutrition

 

levels2,3

diabetes

 

 

disorders

 

 

occasionally

 

 

 

 

Elevated

associated with

 

 

 

 

glucose

ketoacidosis or

 

 

 

 

levels 4

coma, including

 

 

 

 

 

some fatal

 

 

 

 

Elevated

cases (see

 

 

 

 

triglyceride

section 4.4) 11

 

 

 

 

levels 2,5

 

 

 

 

 

Glucosuria

 

 

 

 

 

Increased

 

 

 

 

 

appetite

 

 

 

 

 

 

 

 

 

Nervous

Somnol

Dizziness

Seizures where

Neuroleptic

 

system

ence

 

in most cases a

malignant

 

disorders

 

Akathisia 6

history of

syndrome (see

 

 

 

 

seizures or risk

section 4.4)12

 

 

 

Parkinsonism

factors for

Discontinuation

 

 

 

seizures were

Symptoms 7, 12

 

 

 

 

reported 11

 

 

 

 

Dyskinesia 6

 

 

 

 

 

 

Dystonia

 

 

 

 

 

(including

 

 

 

 

 

oculogyration)1

 

 

 

 

 

 

 

 

 

 

Tardive

 

 

 

 

 

dyskinesia11

 

 

 

 

 

Amnesia 9

 

 

 

 

 

Dysarthria

 

 

 

 

 

Restless legs

 

 

 

 

 

syndrome

 

 

Cardiac

 

 

Bradycardia

Ventricular

 

disorders

 

 

QTc

tachycardia/fibrilla

 

 

 

 

prolongation

tion, sudden death

 

 

 

 

(see section

(see section 4.4)11

 

 

 

 

4.4)

 

 

Vascular

Orthost

 

Thromboembol

 

 

disorders

atic

 

ism (including

 

 

 

hypoten

 

pulmonary

 

 

 

sion10

 

embolism and

 

 

 

 

 

deep vein

 

 

 

 

 

thrombosis)

 

 

 

 

 

(see section

 

 

 

 

 

4.4)

 

 

Respiratory

 

 

Epistaxis9

 

 

, thoracic

 

 

 

 

 

and

 

 

 

 

 

mediastinal

 

 

 

 

 

disorders

 

 

 

 

 

Gastrointest

 

Mild,

Abdominal

Pancreatitis11

 

inal

 

transient

distension9

 

 

disorders

 

anticholinergi

 

 

 

 

 

c effects

 

 

 

 

 

including

 

 

 

 

 

constipation

 

 

 

 

 

and dry

 

 

 

 

 

mouth

 

 

 

Hepato-

 

Transient,

 

Hepatitis

 

biliary

 

asymptomati

 

(including

 

disorders

 

c

 

hepatocellular,

 

 

 

elevations of

 

cholestatic or

 

 

 

hepatic

 

mixed

 

 

 

aminotransfe

 

liver injury)11

 

 

 

rases (ALT,

 

 

 

 

 

AST),

 

 

 

 

 

especially in

 

 

 

 

 

early

 

 

 

 

 

treatment

 

 

 

 

 

(see

 

 

 

 

 

section 4.4)

 

 

 

Skin and

 

Rash

Photosensitivit

 

Drug

subcutaneo

 

 

y reaction

 

reaction

us tissue

 

 

 

 

with

disorders

 

 

Alopecia

 

Eosinophili

 

 

 

 

 

a and

 

 

 

 

 

Systemic

 

 

 

 

 

Symptoms

 

 

 

 

 

(DRESS)

Musculoskel

 

Arthralgia9

 

Rhabdomyolysis11

 

etal and

 

 

 

 

 

connective

 

 

 

 

 

tissue

 

 

 

 

 

disorders

 

 

 

 

 

Renal and

 

 

Urinary

 

 

urinary

 

 

incontinence

 

 

disorders

 

 

Urinary

 

 

 

 

 

retention

 

 

 

 

 

Urinary

 

 

 

 

 

hesitation11

 

 

Pregnancy,

 

 

 

 

Drug

puerperium

 

 

 

 

withdrawal

and

 

 

 

 

syndrome

perinatal

 

 

 

 

neonatal

conditions

 

 

 

 

(see section

 

 

 

 

 

4.6)

Reproducti

 

Erectile

Amenorrhea

Priapism12

 

ve system

 

dysfunction in

Breast

 

 

and breast

 

males

enlargement

 

 

disorders

 

 

Galactorrhea in

 

 

 

 

Decreased

females

 

 

 

 

libido in

Gymnaecomasti

 

 

 

 

males and

a/breast

 

 

 

 

females

enlargement in

 

 

 

 

 

males

 

 

General

 

Asthenia

 

 

 

disorders

 

Fatigue

 

 

 

and

 

Oedema

 

 

 

administrati

 

Pyrexia10

 

 

 

on site

 

 

 

 

 

conditions

 

 

 

 

 

Investigatio

Elevate

Increased

Increased total

 

 

ns

d

alkaline

bilirubin

 

 

 

plasma

phosphatase10

 

 

 

 

prolacti

High creatine

 

 

 

 

n levels

phosphokinas

 

 

 

 

e11

 

 

 

 

 

High Gamma

 

 

 

 

 

Glutamyltrans

 

 

 

 

 

ferase 10

 

 

 

 

 

High uric acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Clinically significant weight gain was observed across all baseline Body Mass Index (BMI) categories. Following short term treatment (median duration 47 days), weight gain ≥ 7 % of baseline body weight was very common (22.2%), ≥ 15% was common (4.2%) and ≥25% was uncommon

(0.8%). Patients gaining ≥7%, ≥15% and ≥25% of their baseline body weight with long-term exposure (at least 48 weeks) were very common (64.4 %, 31.7 % and 12.3 % respectively).

2Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline.

3Observed for fasting normal levels at baseline (< 5.17 mmol/l) which increased to high

(≥ 6.2 mmol/l). Changes in total fasting cholesterol levels from borderline at baseline (≥ 5.17- < 6.2 mmol/l) to high (≥ 6.2 mmol/l) were very common.

4Observed for fasting normal levels at baseline (< 5.56 mmol/l) which increased to high (≥ 7 mmol/l). Changes in fasting glucose from borderline at baseline (≥ 5.56 - < 7 mmol/l) to high (≥ 7 mmol/l) were very common.

5Observed for fasting normal levels at baseline (< 1.69 mmol/l) which increased to high

(≥ 2.26 mmol/l). Changes in fasting triglycerides from borderline at baseline (≥ 1.69 mmol/l - < 2.26 mmol/l) to high (≥ 2.26 mmol/l) were very common.

6In clinical trials, the incidence of Parkinsonism and dystonia in olanzapine-treated patients was numerically higher, but not statistically significantly different from placebo. Olanzapine-treated patients had a lower incidence of Parkinsonism, akathisia and dystonia compared with titrated doses of haloperidol. In the absence of detailed information on the pre-existing history of individual acute and tardive extrapyramidal movement disorders, it cannot be concluded at present that olanzapine produces less tardive dyskinesia and/or other tardive extrapyramidal syndromes.

7Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea and vomiting have been reported when olanzapine is stopped abruptly.

8In clinical trials of up to 12 weeks, plasma prolactin concentrations exceeded the upper limit of normal range in approximately 30% of olanzapine treated patients with normal baseline prolactin value. In the majority of these patients the elevations were generally mild, and remained below two times the upper limit of normal range.

9Adverse event identified from clinical trials in the Olanzapine Integrated Database.

10As assessed by measured values from clinical trials in the Olanzapine Integrated Database.

11Adverse event identified from spontaneous post-marketing reporting with frequency determined utilising the Olanzapine Integrated Database.

12Adverse event identified from spontaneous post-marketing reporting with frequency estimated at the upper limit of the 95% confidence interval utilising the Olanzapine Integrated Database.

Long-term exposure (at least 48 weeks)

The proportion of patients who had adverse, clinically significant changes in weight gain, glucose, total/LDL/HDL cholesterol or triglycerides increased over time. In adult patients who completed 9-12 months of therapy, the rate of increase in mean blood glucose slowed after approximately 6 months.

Additional information on special populations

In clinical trials in elderly patients with dementia, olanzapine treatment was associated with a higher incidence of death and cerebrovascular adverse reactions compared to placebo (see section 4.4). Very common adverse reactions associated with the use of olanzapine in this patient group were abnormal gait and falls. Pneumonia, increased body temperature, lethargy, erythema, visual hallucinations and urinary incontinence were observed commonly.

In clinical trials in patients with drug-induced (dopamine agonist) psychosis associated with

Parkinson’s disease, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo.

In one clinical trial in patients with bipolar mania, valproate combination therapy with olanzapine resulted in an incidence of neutropenia of 4.1 %; a potential contributing factor could be high plasma valproate levels. Olanzapine administered with lithium or valproate resulted in increased levels

(≥ 10 %) of tremor, dry mouth, increased appetite, and weight gain. Speech disorder was also reported commonly. During treatment with olanzapine in combination with lithium or divalproex, an increase of ≥ 7 % from baseline body weight occurred in 17.4 % of patients during acute treatment (up to 6 weeks). Long-term olanzapine treatment (up to 12 months) for recurrence prevention in patients with bipolar disorder was associated with an increase of ≥ 7 % from baseline body weight in 39.9 % of patients.

Paediatric population

Olanzapine is not indicated for the treatment of children and adolescent patients below 18 years. Although no clinical studies designed to compare adolescents to adults have been conducted, data from the adolescent trials were compared to those of the adult trials.

The following table summarises the adverse reactions reported with a greater frequency in adolescent patients (aged 13-17 years) than in adult patients or adverse reactions only identified during short- term clinical trials in adolescent patients. Clinically significant weight gain (≥ 7 %) appears to occur more frequently in the adolescent population compared to adults with comparable exposures. The magnitude of weight gain and the proportion of adolescent patients who had clinically significant weight gain were greater with long-term exposure (at least 24 weeks) than with short-term exposure.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10).

Metabolism and nutrition disorders

Very common: Weight gain 13, elevated triglyceride levels 14, increased appetite. Common: Elevated cholesterol levels 15

Nervous system disorders

Very common: Sedation (including: hypersomnia, lethargy, somnolence).

Gastrointestinal disorders

Common: Dry mouth

Hepatobiliary disorders

Very common: Elevations of hepatic aminotransferases (ALT/AST; see section 4.4).

Investigations

Very common: Decreased total bilirubin, increased GGT, elevated plasma prolactin levels 16

13Following short term treatment (median duration 22 days), weight gain ≥ 7 % of baseline body weight (kg) was very common (40.6 %), ≥ 15 %of baseline body weight was common (7.1 %) and ≥

25% was common (2.5 %). With long-term exposure (at least 24 weeks), 89.4 % gained ≥ 7 %, 55.3 % gained ≥ 15 % and 29.1 % gained ≥ 25% of their baseline body weight.

14Observed for fasting normal levels at baseline (< 1.016 mmol/l) which increased to high

(≥ 1.467 mmol/l) and changes in fasting triglycerides from borderline at baseline (≥ 1.016 mmol/l - < 1.467 mmol/l) to high (≥ 1.467 mmol/l).

15 Changes in total fasting cholesterol levels from normal at baseline (< 4.39 mmol/l) to high

(≥ 5.17 mmol/l) were observed commonly. Changes in total fasting cholesterol levels from borderline at baseline (≥ 4.39 - < 5.17 mmol/l) to high (≥ 5.17 mmol/l) were very common.

16 Elevated plasma prolactin levels were reported in 47.4 % of adolescent patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Signs and symptoms

Very common symptoms in overdose (> 10 % incidence) include tachycardia, agitation/ aggressiveness, dysarthria, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Other medically significant sequelae of overdose include delirium, convulsion, coma, possible neuroleptic malignant syndrome, respiratory depression, aspiration, hypertension or hypotension, cardiac arrhythmias (< 2 % of overdose cases) and cardiopulmonary arrest. Fatal outcomes have been reported for acute overdoses as low as 450 mg but survival has also been reported following acute overdose of approximately 2 g of oral olanzapine.

Management

There is no specific antidote for olanzapine. Induction of emesis is not recommended. Standard procedures for management of overdose may be indicated (i.e. gastric lavage, administration of activated charcoal). The concomitant administration of activated charcoal was shown to reduce the oral bioavailability of olanzapine by 50 to 60 %.

Symptomatic treatment and monitoring of vital organ function should be instituted according to clinical presentation, including treatment of hypotension and circulatory collapse and support of respiratory function. Do not use epinephrine, dopamine, or other sympathomimetic agents with beta- agonist activity since beta stimulation may worsen hypotension. Cardiovascular monitoring is necessary to detect possible arrhythmias. Close medical supervision and monitoring should continue until the patient recovers.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: psycholeptics, diazepines, oxazepines, thiazepines and oxepines, ATC code N05A H03.

Pharmacodynamic effect

Olanzapine is an antipsychotic, antimanic and mood stabilising agent that demonstrates a broad pharmacologic profile across a number of receptor systems.

In preclinical studies, olanzapine exhibited a range of receptor affinities (Ki< 100 nM) for serotonin

5HT2A/2C, 5HT3, 5HT6; dopamine D1, D2, D3, D4, D5; cholinergic muscarinic receptors M1-M5

α1 adrenergic; and histamine H1 receptors. Animal behavioural studies with olanzapine indicated 5HT, dopamine, and cholinergic antagonism, consistent with the receptor-binding profile. Olanzapine demonstrated a greater in vitro affinity for serotonin 5HT2 than dopamine D2 receptors and greater 5HT2 than D2 activity in vivo, models. Electrophysiological studies demonstrated that olanzapine selectively reduced the firing of mesolimbic (A10) dopaminergic neurons, while having little effect on the striatal (A9) pathways involved in motor function. Olanzapine reduced a conditioned avoidance response, a test indicative of antipsychotic activity, at doses below those producing catalepsy, an effect indicative of motor side-effects. Unlike some other antipsychotic agents, olanzapine increases responding in an “anxiolytic” test.

In a single oral dose (10 mg) Positron Emission Tomography (PET) study in healthy volunteers, olanzapine produced a higher 5HT2A than dopamine D2 receptor occupancy. In addition, a Single Photon Emission Computed Tomography (SPECT) imaging study in schizophrenic patients revealed that olanzapine-responsive patients had lower striatal D2 occupancy than some other antipsychotic and risperidone-responsive patients, while being comparable to clozapine-responsive patients.

Clinical efficacy

In two of two placebo and two of three comparator controlled trials with over 2,900 schizophrenic patients presenting with both positive and negative symptoms, olanzapine was associated with statistically significantly greater improvements in negative as well as positive symptoms.

In a multinational, double-blind, comparative study of schizophrenia, schizoaffective, and related disorders which included 1,481 patients with varying degrees of associated depressive symptoms (baseline mean of 16.6 on the Montgomery-Asberg Depression Rating Scale), a prospective secondary analysis of baseline to endpoint mood score change demonstrated a statistically significant improvement (p= 0.001) favouring olanzapine (- 6.0) versus haloperidol (- 3.1).

In patients with a manic or mixed episode of bipolar disorder, olanzapine demonstrated superior efficacy to placebo and valproate semisodium (divalproex) in reduction of manic symptoms over 3 weeks. Olanzapine also demonstrated comparable efficacy results to haloperidol in terms of the

proportion of patients in symptomatic remission from mania and depression at 6 and 12 weeks. In a co-therapy study of patients treated with lithium or valproate for a minimum of 2 weeks, the addition of olanzapine 10 mg (co-therapy with lithium or valproate) resulted in a greater reduction in symptoms of mania than lithium or valproate monotherapy after 6 weeks.

In a 12-month recurrence prevention study in manic episode patients who achieved remission on olanzapine and were then randomised to olanzapine or placebo, olanzapine demonstrated statistically significant superiority over placebo on the primary endpoint of bipolar recurrence. Olanzapine also showed a statistically significant advantage over placebo in terms of preventing either recurrence into mania or recurrence into depression.

In a second 12-month recurrence prevention study in manic episode patients who achieved remission with a combination of olanzapine and lithium and were then randomised to olanzapine or lithium alone, olanzapine was statistically non-inferior to lithium on the primary endpoint of bipolar

recurrence (olanzapine 30.0 %, lithium 38.3 %; p = 0.055).

In an 18-month co-therapy study in manic or mixed episode patients stabilised with olanzapine plus a mood stabiliser (lithium or valproate), long-term olanzapine co-therapy with lithium or valproate was not statistically significantly superior to lithium or valproate alone in delaying bipolar recurrence, defined according to syndromic (diagnostic) criteria.

Paediatric population

Controlled efficacy data in adolescents (ages 13 to 17 years) are limited to short term studies in schizophrenia (6 weeks) and mania associated with bipolar I disorder (3 weeks), involving less than 200 adolescents. Olanzapine was used as a flexible dose starting with 2.5 and ranging up to

20 mg/day. During treatment with olanzapine, adolescents gained significantly more weight compared with adults. The magnitude of changes in fasting total cholesterol, LDL cholesterol, triglycerides, and prolactin (see sections 4.4 and 4.8) were greater in adolescents than in adults. There are no controlled data on maintenance of effect or long term safety (see sections 4.4 and 4.8). Information on long term safety is primarily limited to open-label, uncontrolled data.

5.2 Pharmacokinetic properties

Absorption

Olanzapine is well absorbed after oral administration, reaching peak plasma concentrations within 5 to 8 hours. The absorption is not affected by food. Absolute oral bioavailability relative to intravenous administration has not been determined.

Distribution

The plasma protein binding of Olanzapine was about 93 % over the concentration range of about 7 to about 1000 ng/ml. Olanzapine is bound predominantly to albumin and α1-acid-glycoprotein.

Biotransformation

Olanzapine is metabolized in the liver by conjugative and oxidative pathways. The major circulating metabolite is the 10-N-glucuronide, which does not pass the blood brain barrier. Cytochromes P450-CYP1A2 and P450-CYP2D6 contribute to the formation of the N-desmethyl and 2-hydroxymethyl metabolites, both exhibited significantly less in vivo pharmacological activity than olanzapine in animal studies. The predominant pharmacologic activity is from the parent olanzapine.

Elimination

After oral administration, the mean terminal elimination half-life of olanzapine in healthy subjects varied on the basis of age and gender.

In healthy elderly (65 and over) versus non-elderly subjects, the mean elimination half-life was prolonged (51.8 versus 33.8 hr) and the clearance was reduced (17.5 versus 18.2 l/hr). The pharmacokinetic variability observed in the elderly is within the range for the non-elderly. In 44 patients with schizophrenia > 65 years of age, dosing from 5 to 20 mg/day was not associated with any distinguishing profile of adverse events.

In female versus male subjects the mean elimination half life was somewhat prolonged (36.7 versus 32.3 hrs) and the clearance was reduced (18.9 versus 27.3 l/hr). However, olanzapine (5-20 mg) demonstrated a comparable safety profile in female (n = 467) as in male patients (n = 869).

Renal impairment

In renally impaired patients (creatinine clearance < 10 ml/min) versus healthy subjects, there was no significant difference in mean elimination half-life (37.7 versus 32.4 hr) or clearance (21.2 versus 25.0 l/hr). A mass balance study showed that approximately 57 % of radiolabelled olanzapine appeared in urine, principally as metabolites.

Smokers

In smoking subjects with mild hepatic dysfunction, mean elimination half-life (39.3 hr) was prolonged and clearance (18.0 l/hr) was reduced analogous to non-smoking healthy subjects (48.8 hr and

14.1 l/hr, respectively).

In non-smoking versus smoking subjects (males and females) the mean elimination half-life was prolonged (38.6 versus 30.4 hr) and the clearance was reduced (18.6 versus 27.7 l/hr).

The plasma clearance of olanzapine is lower in elderly versus young subjects, in females versus males, and in non-smokers versus smokers. However, the magnitude of the impact of age, gender, or smoking on olanzapine clearance and half-life is small in comparison to the overall variability between individuals.

In a study of Caucasians, Japanese, and Chinese subjects, there were no differences in the pharmacokinetic parameters among the three populations.

Paediatric population Adolescents (ages 13 to 17 years):

The pharmacokinetics of olanzapine are similar between adolescents and adults. In clinical studies, the average olanzapine exposure was approximately 27 % higher in adolescents. Demographic differences between the adolescents and adults include a lower average body weight and fewer adolescents were smokers. Such factors possibly contribute to the higher average exposure observed in adolescents.

5.3 Preclinical safety data

Acute (single-dose) toxicity

Signs of oral toxicity in rodents were characteristic of potent neuroleptic compounds: hypoactivity, coma, tremors, clonic convulsions, salivation, and depressed weight gain. The median lethal doses were approximately 210 mg/kg (mice) and 175 mg/kg (rats).

Dogs tolerated single oral doses up to 100 mg/kg without mortality. Clinical signs included sedation, ataxia, tremors, increased heart rate, labored respiration, miosis, and anorexia. In monkeys, single oral doses up to 100 mg/kg resulted in prostration and, at higher doses, semi-consciousness.

Repeated-dose toxicity

In studies up to 3 months duration in mice and up to 1 year in rats and dogs, the predominant effects were CNS depression, anticholinergic effects, and peripheral haematological disorders. Tolerance developed to the CNS depression. Growth parameters were decreased at high doses. Reversible effects consistent with elevated prolactin in rats included decreased weights of ovaries and uterus and morphologic changes in vaginal epithelium and in mammary gland.

Haematologic toxicity:

Effects on haematology parameters were found in each species, including dose-related reductions in circulating leukocytes in mice and non-specific reductions of circulating leukocytes in rats; however, no evidence of bone marrow cytotoxicity was found. Reversible neutropenia, thrombocytopenia, or anaemia developed in a few dogs treated with 8 or 10 mg/kg/day (total olanzapine exposure [AUC] is 12- to 15-fold greater than that of a man given a 12-mg dose). In cytopenic dogs, there were no adverse events on progenitor and proliferating cells in the bone marrow.

Reproductive toxicity

Olanzapine had no teratogenic effects. Sedation affected mating performance of male rats. Estrous cycles were affected at doses of 1.1 mg/kg (3 times the maximum human dose) and reproduction parameters were influenced in rats given 3 mg/kg (9 times the maximum human dose). In the offspring of rats given olanzapine, delays in foetal development and transient decreases in offspring activity levels were seen.

Mutagenicity

Olanzapine was not mutagenic or clastogenic in a full range of standard tests, which included bacterial mutation tests and in vitro and in vivo mammalian tests.

Carcinogenicity

Based on the results of studies in mice and rats, it was concluded that olanzapine is not carcinogenic.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Mannitol E 421

Microcrystalline cellulose

Aspartame E 951

Crospovidone

Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months

6.4 Special precautions for storage

Store below 30 C

6.5 Nature and contents of container

Aluminium/aluminium blisters in cartons of 28, 56, 70, 98 tablets per carton

Not all pack sizes may be marketed

6.6 Special precautions for disposal

No special requirements

7. MARKETING AUTHORISATION HOLDER

Glenmark Pharmaceuticals Europe Limited

Laxmi House

2-B Draycott Avenue

Kenton

Harrow

Middlesex

HA3 OBU

United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/587/007

EU/1/09/587/008

EU/1/09/587/009

EU/1/09/587/022

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 03 December 2009

Date of latest renewal: 19 August 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu

1. NAME OF THE MEDICINAL PRODUCT

Olanzapine Glenmark 10 mg tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 10 mg olanzapine.

Excipient with known effect: Each tablet contains 0.46 mg of aspartame

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Tablet

Yellow coloured circular flat bevelled edge tablets with ‘OL’ debossed on one side and ‘D’ debossed on other side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Adults

Olanzapine is indicated for the treatment of schizophrenia.

Olanzapine is effective in maintaining the clinical improvement during continuation therapy in patients who have shown an initial treatment response.

Olanzapine is indicated for the treatment of moderate to severe manic episode.

In patients whose manic episode has responded to olanzapine treatment, olanzapine is indicated for the prevention of recurrence in patients with bipolar disorder (see section 5.1).

4.2 Posology and method of administration

Adults

Schizophrenia: The recommended starting dose for olanzapine is 10 mg/day.

Manic episode: The starting dose is 15 mg as a single daily dose in monotherapy or 10 mg daily in combination therapy (see section 5.1).

Preventing recurrence in bipolar disorder: The recommended starting dose is 10 mg/day. For patients who have been receiving olanzapine for treatment of manic episode, continue therapy for preventing recurrence at the same dose. If a new manic, mixed, or depressive episode occurs, olanzapine treatment should be continued (with dose optimisation as needed), with supplementary therapy to treat mood symptoms, as clinically indicated.

During treatment for schizophrenia, manic episode and recurrence prevention in bipolar disorder, daily dosage may subsequently be adjusted on the basis of individual clinical status within the range 5-20 mg/day. An increase to a dose greater than the recommended starting dose is advised only after appropriate clinical reassessment and should generally occur at intervals of not less than 24 hours. Olanzapine can be given without regards for meals as absorption is not affected by food. Gradual tapering of the dose should be considered when discontinuing olanzapine.

Special populations

Elderly patients

A lower starting dose (5 mg/day) is not routinely indicated but should be considered for those 65 and over when clinical factors warrant (see section 4.4).

Patients with renal and/or hepatic impairment

A lower starting dose (5 mg) should be considered for such patients. In cases of moderate hepatic insufficiency (cirrhosis, Child-Pugh Class A or B), the starting dose should be 5 mg and only increased with caution.

Smokers

The starting dose and dose range need not be routinely altered for non-smokers relative to smokers. The metabolism of olanzapine may be induced by smoking. Clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.5)

When more than one factor is present which might result in slower metabolism (female gender, geriatric age, non-smoking status), consideration should be given to decreasing the starting dose. Dose escalation, when indicated, should be conservative in such patients (See sections 4.5 and 5.2.).

Paediatric population

Olanzapine is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy. A greater magnitude of weight gain, lipid and prolactin alterations has been reported in short term studies of adolescent patients than in studies of adult patients (see sections 4.4, 4.8, 5.1 and 5.2).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. Patients with known risk of narrow-angle glaucoma.

4.4 Special warnings and precautions for use

During antipsychotic treatment, improvement in the patient's clinical condition may take several days to some weeks. Patients should be closely monitored during this period.

Dementia-related psychosis and/or behavioural disturbances

Olanzapine is not recommended for use in patients with dementia-related psychosis and/or behavioural disturbances because of an increase in mortality and the risk of cerebrovascular accident. In placebo-controlled clinical trials (6-12 weeks duration) of elderly patients (mean age 78 years) with dementia-related psychosis and/or disturbed behaviours, there was a 2-fold increase in the incidence of death in olanzapine-treated patients compared to patients treated with placebo (3.5 % versus 1.5 %, respectively). The higher incidence of death was not associated with olanzapine dose (mean daily dose 4.4 mg) or duration of treatment. Risk factors that may predispose this patient population to increased mortality include age > 65 years, dysphagia, sedation, malnutrition and dehydration, pulmonary conditions (e.g., pneumonia, with or without aspiration), or concomitant use of benzodiazepines. However, the incidence of death was higher in olanzapine-treated than in placebo- treated patients independent of these risk factors.

In the same clinical trials, cerebrovascular adverse events (CVAE e.g., stroke, transient ischemic attack), including fatalities, were reported. There was a 3-fold increase in CVAE in patients treated with olanzapine compared to patients treated with placebo (1.3 % versus 0.4 %, respectively). All olanzapine and placebo-treated patients who experienced a cerebrovascular event had pre-existing risk factors. Age > 75 years and vascular/mixed type dementia were identified as risk factors for CVAE in association with olanzapine treatment. The efficacy of olanzapine was not established in these trials.

Parkinson's disease

The use of olanzapine in the treatment of dopamine agonist associated psychosis in patients with Parkinson's disease is not recommended. In clinical trials, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo (see section 4.8), and olanzapine was not more effective than placebo in the treatment of psychotic symptoms. In these trials, patients were initially required to be stable on the lowest effective dose of anti- Parkinsonian medicinal products (dopamine agonist) and to remain on the same anti-Parkinsonian medicinal products and dosages throughout the study. Olanzapine was started at 2.5 mg/day and titrated to a maximum of 15 mg/day based on investigator judgement.

Neuroleptic Malignant Syndrome (NMS)

NMS is a potentially life-threatening condition associated with antipsychotic medicinal products. Rare cases reported as NMS have also been received in association with olanzapine. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure. If a patient develops signs and symptoms indicative of NMS, or presents with unexplained high fever without additional clinical manifestations of NMS, all antipsychotic medicines, including olanzapine must be discontinued.

Hyperglycaemia and diabetes

Hyperglycaemia and/or development or exacerbation of diabetes occasionally associated with ketoacidosis or coma has been reported uncommonly, including some fatal cases (see section 4.8). In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines , e.g. measuring of blood glucose at baseline, 12 weeks after starting olanzapine treatment and annually thereafter. Patients treated with any antipsychotic medicines, including olanzapine, should be observed for signs and symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia, and weakness) and patients with diabetes mellitus or with risk factors for diabetes mellitus should be monitored regularly for worsening of glucose control. Weight should be monitored regularly e.g. at baseline, 4, 8 and 12 weeks after starting olanzapine treatment and quarterly thereafter.

Lipid alterations

Undesirable alterations in lipids have been observed in olanzapine-treated patients in placebo- controlled clinical trials (see section 4.8). Lipid alterations should be managed as clinically appropriate, particularly in dyslipidemic patients and in patients with risk factors for the development of lipids disorders. Patients treated with any antipsychotic medicines, including olanzapine, should be monitored regularly for lipids in accordance with utilised antipsychotic guidelines e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Anticholinergic activity

While olanzapine demonstrated anticholinergic activity in vitro, experience during the clinical trials revealed a low incidence of related events. However, as clinical experience with olanzapine in patients with concomitant illness is limited, caution is advised when prescribing for patients with prostatic hypertrophy, or paralytic ileus and related conditions.

Hepatic function

Transient, asymptomatic elevations of hepatic aminotransferases, alanine transferase (ALT), aspartate transferase (AST) have been seen commonly, especially in early treatment.

Caution should be exercised and follow-up organised in patients with elevated ALT and/or AST, in patients with signs and symptoms of hepatic impairment, in patients with pre-existing conditions associated with limited hepatic functional reserve, and in patients who are being treated with potentially hepatotoxic medicines.

In cases where hepatitis (including hepatocellular, cholestatic or mixed liver injury) has been diagnosed, olanzapine treatment should be discontinued.

Neutropenia

Caution should be exercised in patients with low leukocyte and/or neutrophil counts for any reason, in patients receiving medicines known to cause neutropenia, in patients with a history of drug-induced bone marrow depression/toxicity, in patients with bone marrow depression caused by concomitant illness, radiation therapy or chemotherapy and in patients with hypereosinophilic conditions or with myeloproliferative disease.

Neutropenia has been reported commonly when olanzapine and valproate are used concomitantly (see section 4.8).

Discontinuation of treatment

Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea, or vomiting have been reported rarely (≥ 0.01% and < 0.1%) when olanzapine is stopped abruptly.

QT interval

In clinical trials, clinically meaningful QTc prolongations (Fridericia QT correction [QTcF] ≥ 500 milliseconds [msec] at any time post baseline in patients with baseline QTcF < 500 msec) were uncommon (0.1 % to 1 %) in patients treated with olanzapine, with no significant differences in associated cardiac events compared to placebo. However, caution should be exercised when olanzapine is prescribed with medicines known to increase QTc interval, especially in the elderly, in patients with congenital long QT syndrome, congestive heart failure, heart hypertrophy, hypokalaemia or hypomagnesaemia.

Thromboembolism

Temporal association of olanzapine treatment and venous thromboembolism has been reported uncommonly (≥ 0.1% and < 1%). A causal relationship between the occurrence of venous thromboembolism and treatment with olanzapine has not been established. However, since patients with schizophrenia often present with acquired risk factors for venous thromboembolism all possible risk factors of VTE e.g. immobilisation of patients, should be identified and preventive measures undertaken.

General CNS activity

Given the primary CNS effects of olanzapine, caution should be used when it is taken in combination with other centrally acting medicines and alcohol. As it exhibits in vitro dopamine antagonism, olanzapine may antagonize the effects of direct and indirect dopamine agonists.

Seizures

Olanzapine should be used cautiously in patients who have a history of seizures or are subject to factors, which may lower the seizure threshold.

Seizures have been reported to occur uncommonly in patients when treated with olanzapine. In most of these cases, a history of seizures or risk factors for seizures were reported.

Tardive Dyskinesia

In comparator studies of one year or less duration, olanzapine was associated with a statistically significant lower incidence of treatment emergent dyskinesia. However the risk of tardive dyskinesia increases with long-term exposure, and therefore if signs or symptoms of tardive dyskinesia appear in a patient on olanzapine, a dose reduction or discontinuation should be considered. These symptoms can temporally deteriorate or even arise after discontinuation of treatment.

Postural hypotension

Postural hypotension was infrequently observed in the elderly in olanzapine clinical trials. It is recommended that blood pressure is measured periodically in patients over 65 years.

Sudden cardiac death

In postmarketing reports with olanzapine, the event of sudden cardiac death has been reported in patients with olanzapine. In a retrospective observational cohort study, the risk of presumed sudden cardiac death in patients treated with olanzapine was approximately twice the risk in patients not using antipsychotics. In the study, the risk of olanzapine was comparable to the risk of atypical antipsychotics included in a pooled analysis.

Paediatric population

Olanzapine is not indicated for use in the treatment of children and adolescents. Studies in patients aged 13-17 years showed various adverse reactions, including weight gain, changes in metabolic parameters and increases in prolactin levels (see sections 4.8 and 5.1).

Phenylalanine

Olanzapine Glenmark tablet contains aspartame, which is a source of phenylalanine. May be harmful for people with phenylketonuria.

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Potential interactions affecting olanzapine

Since olanzapine is metabolised by CYP1A2, substances that can specifically induce or inhibit this isoenzyme may affect the pharmacokinetics of olanzapine.

Induction of CYP1A2

The metabolism of olanzapine may be induced by smoking and carbamazepine, which may lead to reduced olanzapine concentrations. Only slight to moderate increase in olanzapine clearance has been observed. The clinical consequences are likely to be limited, but clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.2).

Inhibition of CYP1A2

Fluvoxamine, a specific CYP1A2 inhibitor, has been shown to significantly inhibit the metabolism of olanzapine. The mean increase in olanzapine Cmax following fluvoxamine was 54 % in female nonsmokers and 77 % in male smokers. The mean increase in olanzapine AUC was 52 % and 108 % respectively. A lower starting dose of olanzapine should be considered in patients who are using fluvoxamine or any other CYP1A2 inhibitors, such as ciprofloxacin. A decrease in the dose of olanzapine should be considered if treatment with an inhibitor of CYP1A2 is initiated.

Decreased bioavailability

Activated charcoal reduces the bioavailability of oral olanzapine by 50 to 60 % and should be taken at least 2 hours before or after olanzapine.

Fluoxetine (a CYP2D6 inhibitor), single doses of antacid (aluminium, magnesium) or cimetidine have not been found to significantly affect the pharmacokinetics of olanzapine.

Potential for olanzapine to affect other medicinal products

Olanzapine may antagonise the effects of direct and indirect dopamine agonists.

Olanzapine does not inhibit the main CYP450 isoenzymes in vitro (e.g. 1A2, 2D6, 2C9, 2C19, 3A4). Thus no particular interaction is expected as verified through in vivo studies where no inhibition of metabolism of the following active substances was found: tricyclic antidepressant (representing mostly CYP2D6 pathway), warfarin (CYP2C9), theophylline (CYP1A2) or diazepam (CYP3A4 and CYP2C19).

Olanzapine showed no interaction when co-administered with lithium or biperiden.

Therapeutic monitoring of valproate plasma levels did not indicate that valproate dosage adjustment is required after the introduction of concomitant olanzapine.

General CNS activity

Caution should be exercised in patients who consume alcohol or receive medicinal products that can cause central nervous system depression.

The concomitant use of olanzapine with anti-Parkinsonian medicinal products in patients with Parkinson's disease and dementia is not recommended (see section 4.4).

QTc interval

Caution should be used if olanzapine is being administered concomitantly with medicinal products known to increase QTc interval (see section 4.4).

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no adequate and well-controlled studies in pregnant women. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during treatment with olanzapine. Nevertheless, because human experience is limited, olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the foetus.

New born infants exposed to antipsychotics (including olanzapine) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully.

Breast feeding

In a study in breast- feeding, healthy women, olanzapine was excreted in breast milk. Mean infant exposure (mg/kg) at steady state was estimated to be 1.8 % of the maternal olanzapine dose (mg/kg). Patients should be advised not to breast- feed an infant if they are taking olanzapine.

Fertility

Effects on fertility are unknown (see section 5.3 for preclinical information).

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. Because olanzapine may cause somnolence and dizziness, patients should be cautioned about operating machinery, including motor vehicles.

4.8 Undesirable effects

Summary of the safety profile

Adults

The most frequently (seen in ≥ 1 % of patients) reported adverse reactions associated with the use of olanzapine in clinical trials were somnolence, weight gain, eosinophilia, elevated prolactin, cholesterol, glucose and triglyceride levels (see section 4.4), glucosuria, increased appetite, dizziness, akathisia, parkinsonism, leukopenia, neutropenia (see section 4.4), dyskinesia, orthostatic hypotension, anticholinergic effects, transient asymptomatic elevations of hepatic aminotransferases (see section 4.4), rash, asthenia, fatigue, pyrexia, arthralgia, increased alkaline phosphatase, high gamma glutamyltransferase, high uric acid, high creatine phosphokinase and oedema.

Tabulated list of adverse reactions

The following table lists the adverse reactions and laboratory investigations observed from spontaneous reporting and in clinical trials. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the data available).

 

Very

Common

Uncommon

Rare

Not

 

common

 

 

 

 

 

known

Blood and the

 

Eosinophilia

 

 

Thrombocytopenia

 

lymphatic system

 

Leukopenia10

 

 

 

 

disorders

 

Neutropenia10

 

 

 

 

Immune system

 

 

 

Hypersensitivity11

 

 

disorders

 

 

 

 

 

 

 

Metabolism and

Weight gain 1

Elevated cholesterol

Development or

Hypothermia12

 

nutrition

 

levels2,3

 

exacerbation of

 

 

disorders

 

 

 

diabetes

 

 

 

 

 

Elevated glucose

occasionally

 

 

 

 

 

levels 4

 

associated with

 

 

 

 

 

 

ketoacidosis or

 

 

 

 

Elevated triglyceride

coma, including

 

 

 

 

levels 2,5

 

some fatal cases

 

 

 

 

 

 

(see section 4.4) 11

 

 

 

 

Glucosuria

 

 

 

 

 

 

Increased appetite

 

 

 

 

 

 

 

 

 

 

 

Nervous system

Somnolence

Dizziness

 

Seizures where in

Neuroleptic

 

disorders

 

 

 

most cases a history

malignant syndrome

 

 

 

Akathisia

of seizures or risk

(see section

 

 

 

 

factors for seizures

 

 

 

 

 

4.4)

 

 

 

 

 

were reported11

 

 

 

Parkinsonism 6

 

 

 

 

 

 

Dystonia (including

Discontinuation

 

 

 

Dyskinesia 6

Symptoms 7, 12

 

 

 

oculogyration)

 

 

 

 

 

 

 

 

 

 

 

 

Tardive dyskinesia11

 

 

 

 

 

 

Amnesia 9

 

 

 

 

 

 

 

Dysarthria

 

 

 

 

 

 

 

Restless legs

 

 

 

 

 

 

 

syndrome

 

 

 

Cardiac

 

 

 

Bradycardia

 

Ventricular

 

disorders

 

 

 

QTc prolongation

tachycardia/fibrillati

 

 

 

 

 

(see section 4.4)

on, sudden death

 

 

 

 

 

 

 

(see section 4.4)11

 

Vascular

Orthostatic

 

 

Thromboembolis

 

 

disorders

hypotension10

 

 

m (including

 

 

 

 

 

 

 

pulmonary

 

 

 

 

 

 

 

embolism and

 

 

 

 

 

 

deep vein

 

 

 

 

 

 

 

thrombosis) (see

 

 

 

 

 

 

section 4.4)

 

 

 

Respiratory,

 

 

 

Epistaxis9

 

 

 

thoracic and

 

 

 

 

 

 

 

mediastinal

 

 

 

 

 

 

 

disorders

 

 

 

 

 

 

 

Gastrointestinal

 

Mild, transient

Abdominal

 

Pancreatitis

 

disorders

 

anticholinergic effects

distension9

 

 

 

 

 

including constipation

 

 

 

 

 

 

and dry mouth

 

 

 

 

Hepatobiliary

 

Transient,

 

Hepatitis

 

disorders

 

asymptomatic

 

(including

 

 

 

elevations of hepatic

 

hepatocellular,

 

 

 

aminotransferases

 

cholestatic or

 

 

 

(ALT, AST),

 

mixed

 

 

 

especially in

 

liver injury)11

 

 

 

early treatment (see

 

 

 

 

 

section 4.4)

 

 

 

Skin and

 

Rash

Photosensitivity

 

Drug

subcutaneous

 

 

reaction

 

reaction

tissue disorders

 

 

 

 

with

 

 

 

Alopecia

 

Eosinoph

 

 

 

 

 

ilia and

 

 

 

 

 

Systemic

 

 

 

 

 

Symptom

 

 

 

 

 

s

 

 

 

 

 

(DRESS)

Musculoskeletal

 

Arthralgia9

 

Rhabdomyolysis11

 

and connective

 

 

 

 

 

tissue disorders

 

 

 

 

 

Renal and

 

 

Urinary

 

 

urinary disorders

 

 

incontinence

 

 

 

 

 

Urinary retention

 

 

 

 

 

Urinary

 

 

 

 

 

hesitation11

 

 

Pregnancy,

 

 

 

 

Drug

puerperium and

 

 

 

 

withdraw

perinatal

 

 

 

 

al

conditions

 

 

 

 

syndrom

 

 

 

 

 

e

 

 

 

 

 

neonatal

 

 

 

 

 

(see

 

 

 

 

 

section

 

 

 

 

 

4.6)

Reproductive

 

Erectile dysfunction in

Amenorrhea

Priapism12

 

system and

 

males

Breast

 

 

breast disorders

 

 

enlargement

 

 

 

 

Decreased libido in

Galactorrhea in

 

 

 

 

males and females

females

 

 

 

 

 

Gymnaecomastia/

 

 

 

 

 

breast

 

 

 

 

 

enlargement in

 

 

 

 

 

males

 

 

General

 

Asthenia

 

 

 

disorders and

 

Fatigue

 

 

 

administration

 

Oedema

 

 

 

site conditions

 

Pyrexia10

 

 

 

Investigations

Elevated

Increased alkaline

Increased total

 

 

 

plasma

phosphatase10

bilirubin

 

 

 

prolactin

High creatine

 

 

 

 

levels 8

phosphokinase11

 

 

 

 

 

High Gamma

 

 

 

 

 

Glutamyltransferase 10

 

 

 

 

 

High uric acid 10

 

 

 

1 Clinically significant weight gain was observed across all baseline Body Mass Index (BMI) categories. Following short term treatment (median duration 47 days), weight gain ≥ 7 % of baseline body weight was very common (22.2%), ≥ 15% was common (4.2%) and ≥25% was uncommon

(0.8%). Patients gaining ≥7%, ≥15% and ≥25% of their baseline body weight with long-term exposure (at least 48 weeks) were very common (64.4 %, 31.7 % and 12.3 % respectively).

2Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline.

3Observed for fasting normal levels at baseline (< 5.17 mmol/l) which increased to high

(≥ 6.2 mmol/l). Changes in total fasting cholesterol levels from borderline at baseline (≥ 5.17- < 6.2 mmol/l) to high (≥ 6.2 mmol/l) were very common.

4Observed for fasting normal levels at baseline (< 5.56 mmol/l) which increased to high (≥ 7 mmol/l). Changes in fasting glucose from borderline at baseline (≥ 5.56 - < 7 mmol/l) to high (≥ 7 mmol/l) were very common.

5Observed for fasting normal levels at baseline (< 1.69 mmol/l) which increased to high

(≥ 2.26 mmol/l). Changes in fasting triglycerides from borderline at baseline (≥ 1.69 mmol/l - < 2.26 mmol/l) to high (≥ 2.26 mmol/l) were very common.

6In clinical trials, the incidence of Parkinsonism and dystonia in olanzapine-treated patients was numerically higher, but not statistically significantly different from placebo. Olanzapine-treated patients had a lower incidence of Parkinsonism, akathisia and dystonia compared with titrated doses of haloperidol. In the absence of detailed information on the pre-existing history of individual acute and tardive extrapyramidal movement disorders, it cannot be concluded at present that olanzapine produces less tardive dyskinesia and/or other tardive extrapyramidal syndromes.

7Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea and vomiting have been reported when olanzapine is stopped abruptly.

8In clinical trials of up to 12 weeks, plasma prolactin concentrations exceeded the upper limit of normal range in approximately 30% of olanzapine treated patients with normal baseline prolactin value. In the majority of these patients the elevations were generally mild, and remained below two times the upper limit of normal range.

9Adverse event identified from clinical trials in the Olanzapine Integrated Database.

10As assessed by measured values from clinical trials in the Olanzapine Integrated Database.

11Adverse event identified from spontaneous post-marketing reporting with frequency determined utilising the Olanzapine Integrated Database.

12Adverse event identified from spontaneous post-marketing reporting with frequency estimated at the upper limit of the 95% confidence interval utilising the Olanzapine Integrated Database.

Long-term exposure (at least 48 weeks)

The proportion of patients who had adverse, clinically significant changes in weight gain, glucose, total/LDL/HDL cholesterol or triglycerides increased over time. In adult patients who completed 9-12 months of therapy, the rate of increase in mean blood glucose slowed after approximately 6 months.

Additional information on special populations

In clinical trials in elderly patients with dementia, olanzapine treatment was associated with a higher incidence of death and cerebrovascular adverse reactions compared to placebo (see section 4.4). Very common adverse reactions associated with the use of olanzapine in this patient group were abnormal gait and falls. Pneumonia, increased body temperature, lethargy, erythema, visual hallucinations and urinary incontinence were observed commonly.

In clinical trials in patients with drug-induced (dopamine agonist) psychosis associated with

Parkinson’s disease, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo.

In one clinical trial in patients with bipolar mania, valproate combination therapy with olanzapine resulted in an incidence of neutropenia of 4.1 %; a potential contributing factor could be high plasma valproate levels. Olanzapine administered with lithium or valproate resulted in increased levels

(≥ 10 %) of tremor, dry mouth, increased appetite, and weight gain. Speech disorder was also reported commonly. During treatment with olanzapine in combination with lithium or divalproex, an increase of ≥ 7 % from baseline body weight occurred in 17.4 % of patients during acute treatment (up to 6 weeks). Long-term olanzapine treatment (up to 12 months) for recurrence prevention in patients with bipolar disorder was associated with an increase of ≥ 7 % from baseline body weight in 39.9 % of patients.

Paediatric population

Olanzapine is not indicated for the treatment of children and adolescent patients below 18 years. Although no clinical studies designed to compare adolescents to adults have been conducted, data from the adolescent trials were compared to those of the adult trials.

The following table summarises the adverse reactions reported with a greater frequency in adolescent patients (aged 13-17 years) than in adult patients or adverse reactions only identified during short- term clinical trials in adolescent patients. Clinically significant weight gain (≥ 7 %) appears to occur more frequently in the adolescent population compared to adults with comparable exposures. The magnitude of weight gain and the proportion of adolescent patients who had clinically significant weight gain were greater with long-term exposure (at least 24 weeks) than with short-term exposure.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10).

Metabolism and nutrition disorders

Very common: Weight gain 13, elevated triglyceride levels 14, increased appetite. Common: Elevated cholesterol levels 15

Nervous system disorders

Very common: Sedation (including: hypersomnia, lethargy, somnolence).

Gastrointestinal disorders

Common: Dry mouth

Hepatobiliary disorders

Very common: Elevations of hepatic aminotransferases (ALT/AST; see section 4.4).

Investigations

Very common: Decreased total bilirubin, increased GGT, elevated plasma prolactin levels 16

13Following short term treatment (median duration 22 days), weight gain ≥ 7 % of baseline body weight (kg) was very common (40.6 %), ≥ 15 %of baseline body weight was common (7.1 %) and ≥

25% was common (2.5 %). With long-term exposure (at least 24 weeks), 89.4 % gained ≥ 7 %, 55.3 % gained ≥ 15 % and 29.1 % gained ≥ 25% of their baseline body weight.

14Observed for fasting normal levels at baseline (< 1.016 mmol/l) which increased to high

(≥ 1.467 mmol/l) and changes in fasting triglycerides from borderline at baseline (≥ 1.016 mmol/l - < 1.467 mmol/l) to high (≥ 1.467 mmol/l).

15 Changes in total fasting cholesterol levels from normal at baseline (< 4.39 mmol/l) to high

(≥ 5.17 mmol/l) were observed commonly. Changes in total fasting cholesterol levels from borderline at baseline (≥ 4.39 - < 5.17 mmol/l) to high (≥ 5.17 mmol/l) were very common.

16 Elevated plasma prolactin levels were reported in 47.4 % of adolescent patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Signs and symptoms

Very common symptoms in overdose (> 10 % incidence) include tachycardia, agitation/ aggressiveness, dysarthria, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Other medically significant sequelae of overdose include delirium, convulsion, coma, possible neuroleptic malignant syndrome, respiratory depression, aspiration, hypertension or hypotension, cardiac arrhythmias (< 2 % of overdose cases) and cardiopulmonary arrest. Fatal outcomes have been reported for acute overdoses as low as 450 mg but survival has also been reported following acute overdose of approximately 2 g of oral olanzapine.

Management

There is no specific antidote for olanzapine. Induction of emesis is not recommended. Standard procedures for management of overdose may be indicated (i.e. gastric lavage, administration of activated charcoal). The concomitant administration of activated charcoal was shown to reduce the oral bioavailability of olanzapine by 50 to 60 %.

Symptomatic treatment and monitoring of vital organ function should be instituted according to clinical presentation, including treatment of hypotension and circulatory collapse and support of respiratory function. Do not use epinephrine, dopamine, or other sympathomimetic agents with beta- agonist activity since beta stimulation may worsen hypotension. Cardiovascular monitoring is necessary to detect possible arrhythmias. Close medical supervision and monitoring should continue until the patient recovers.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: psycholeptics, diazepines, oxazepines, thiazepines and oxepines, ATC code N05A H03.

Pharmacodynamic effects

Olanzapine is an antipsychotic, antimanic and mood stabilising agent that demonstrates a broad pharmacologic profile across a number of receptor systems.

In preclinical studies, olanzapine exhibited a range of receptor affinities (Ki < 100 nM) for serotonin

5HT2A/2C, 5HT3, 5HT6; dopamine D1, D2, D3, D4, D5; cholinergic muscarinic receptors M1-M5;

α1 adrenergic; and histamine H1 receptors. Animal behavioural studies with olanzapine indicated 5HT, dopamine, and cholinergic antagonism, consistent with the receptor-binding profile.

Olanzapine demonstrated a greater in vitro affinity for serotonin 5HT2 than dopamine D2 receptors and greater 5HT2 than D2 activity in vivo, models. Electrophysiological studies demonstrated that olanzapine selectively reduced the firing of mesolimbic (A10) dopaminergic neurons, while having little effect on the striatal (A9) pathways involved in motor function. Olanzapine reduced a conditioned avoidance response, a test indicative of antipsychotic activity, at doses below those producing catalepsy, an effect indicative of motor side-effects. Unlike some other antipsychotic agents, olanzapine increases responding in an “anxiolytic” test.

In a single oral dose (10 mg) Positron Emission Tomography (PET) study in healthy volunteers, olanzapine produced a higher 5HT2A than dopamine D2 receptor occupancy. In addition, a Single Photon Emission Computed Tomography (SPECT) imaging study in schizophrenic patients revealed that olanzapine-responsive patients had lower striatal D2 occupancy than some other antipsychotic and risperidone-responsive patients, while being comparable to clozapine-responsive patients.

Clinical efficacy

In two of two placebo and two of three comparator controlled trials with over 2,900 schizophrenic patients presenting with both positive and negative symptoms, olanzapine was associated with statistically significantly greater improvements in negative as well as positive symptoms.

In a multinational, double-blind, comparative study of schizophrenia, schizoaffective, and related disorders which included 1,481 patients with varying degrees of associated depressive symptoms (baseline mean of 16.6 on the Montgomery-Asberg Depression Rating Scale), a prospective secondary analysis of baseline to endpoint mood score change demonstrated a statistically significant improvement (p= 0.001) favouring olanzapine (- 6.0) versus haloperidol (- 3.1).

In patients with a manic or mixed episode of bipolar disorder, olanzapine demonstrated superior efficacy to placebo and valproate semisodium (divalproex) in reduction of manic symptoms over 3 weeks. Olanzapine also demonstrated comparable efficacy results to haloperidol in terms of the

proportion of patients in symptomatic remission from mania and depression at 6 and 12 weeks. In a co-therapy study of patients treated with lithium or valproate for a minimum of 2 weeks, the addition of olanzapine 10 mg (co-therapy with lithium or valproate) resulted in a greater reduction in symptoms of mania than lithium or valproate monotherapy after 6 weeks.

In a 12-month recurrence prevention study in manic episode patients who achieved remission on olanzapine and were then randomised to olanzapine or placebo, olanzapine demonstrated statistically significant superiority over placebo on the primary endpoint of bipolar recurrence. Olanzapine also showed a statistically significant advantage over placebo in terms of preventing either recurrence into mania or recurrence into depression.

In a second 12-month recurrence prevention study in manic episode patients who achieved remission with a combination of olanzapine and lithium and were then randomised to olanzapine or lithium alone, olanzapine was statistically non-inferior to lithium on the primary endpoint of bipolar recurrence (olanzapine 30.0 %, lithium 38.3 %; p = 0.055).

In an 18-month co-therapy study in manic or mixed episode patients stabilised with olanzapine plus a mood stabiliser (lithium or valproate), long-term olanzapine co-therapy with lithium or valproate was not statistically significantly superior to lithium or valproate alone in delaying bipolar recurrence, defined according to syndromic (diagnostic) criteria.

Paediatric population

Controlled efficacy data in adolescents (ages 13 to 17 years) are limited to short term studies in schizophrenia (6 weeks) and mania associated with bipolar I disorder (3 weeks), involving less than 200 adolescents. Olanzapine was used as a flexible dose starting with 2.5 and ranging up to

20 mg/day. During treatment with olanzapine, adolescents gained significantly more weight compared with adults. The magnitude of changes in fasting total cholesterol, LDL cholesterol, triglycerides, and prolactin (see sections 4.4 and 4.8) were greater in adolescents than in adults. There are no controlled data on maintenance of effect or long term safety (see sections 4.4 and 4.8). Information on long term safety is primarily limited to open-label, uncontrolled data.

5.2 Pharmacokinetic properties

Absorption

Olanzapine is well absorbed after oral administration, reaching peak plasma concentrations within 5 to 8 hours. The absorption is not affected by food. Absolute oral bioavailability relative to intravenous

administration has not been determined.

Distribution

The plasma protein binding of Olanzapine was about 93 % over the concentration range of about 7 to about 1000 ng/ml. Olanzapine is bound predominantly to albumin and α1-acid-glycoprotein.

Biotransformation

Olanzapine is metabolized in the liver by conjugative and oxidative pathways. The major circulating metabolite is the 10-N-glucuronide, which does not pass the blood brain barrier. Cytochromes P450-CYP1A2 and P450-CYP2D6 contribute to the formation of the N-desmethyl and 2-hydroxymethyl metabolites, both exhibited significantly less in vivo pharmacological activity than olanzapine in animal studies. The predominant pharmacologic activity is from the parent olanzapine.

Elimination

After oral administration, the mean terminal elimination half-life of olanzapine in healthy subjects varied on the basis of age and gender.

In healthy elderly (65 and over) versus non-elderly subjects, the mean elimination half-life was prolonged (51.8 versus 33.8 hr) and the clearance was reduced (17.5 versus 18.2 l/hr). The pharmacokinetic variability observed in the elderly is within the range for the non-elderly. In 44 patients with schizophrenia > 65 years of age, dosing from 5 to 20 mg/day was not associated with any distinguishing profile of adverse events.

In female versus male subjects the mean elimination half life was somewhat prolonged (36.7 versus 32.3 hrs) and the clearance was reduced (18.9 versus 27.3 l/hr). However, olanzapine (5-20 mg) demonstrated a comparable safety profile in female (n = 467) as in male patients (n = 869).

Renal impairment

In renally impaired patients (creatinine clearance < 10 ml/min) versus healthy subjects, there was no significant difference in mean elimination half-life (37.7 versus 32.4 hr) or clearance (21.2 versus 25.0 l/hr). A mass balance study showed that approximately 57 % of radiolabelled olanzapine appeared in urine, principally as metabolites.

Smokers

In smoking subjects with mild hepatic dysfunction, mean elimination half-life (39.3 hr) was prolonged and clearance (18.0 l/hr) was reduced analogous to non-smoking healthy subjects (48.8 hr and

14.1 l/hr, respectively).

In non-smoking versus smoking subjects (males and females) the mean elimination half-life was prolonged (38.6 versus 30.4 hr) and the clearance was reduced (18.6 versus 27.7 l/hr).

The plasma clearance of olanzapine is lower in elderly versus young subjects, in females versus males, and in non-smokers versus smokers. However, the magnitude of the impact of age, gender, or smoking on olanzapine clearance and half-life is small in comparison to the overall variability between individuals.

In a study of Caucasians, Japanese, and Chinese subjects, there were no differences in the pharmacokinetic parameters among the three populations.

Paediatric population Adolescents (ages 13 to 17 years):

The pharmacokinetics of olanzapine are similar between adolescents and adults. In clinical studies, the average olanzapine exposure was approximately 27 % higher in adolescents. Demographic differences between the adolescents and adults include a lower average body weight and fewer adolescents were smokers. Such factors possibly contribute to the higher average exposure observed in adolescents.

5.3 Preclinical safety data

Acute (single-dose) toxicity

Signs of oral toxicity in rodents were characteristic of potent neuroleptic compounds: hypoactivity, coma, tremors, clonic convulsions, salivation, and depressed weight gain. The median lethal doses were approximately 210 mg/kg (mice) and 175 mg/kg (rats).

Dogs tolerated single oral doses up to 100 mg/kg without mortality. Clinical signs included sedation, ataxia, tremors, increased heart rate, labored respiration, miosis, and anorexia. In monkeys, single oral doses up to 100 mg/kg resulted in prostration and, at higher doses, semi-consciousness.

Repeated-dose toxicity

In studies up to 3 months duration in mice and up to 1 year in rats and dogs, the predominant effects were CNS depression, anticholinergic effects, and peripheral haematological disorders. Tolerance developed to the CNS depression. Growth parameters were decreased at high doses. Reversible effects consistent with elevated prolactin in rats included decreased weights of ovaries and uterus and morphologic changes in vaginal epithelium and in mammary gland.

Haematologic toxicity:

Effects on haematology parameters were found in each species, including dose-related reductions in circulating leukocytes in mice and non-specific reductions of circulating leukocytes in rats; however, no evidence of bone marrow cytotoxicity was found.

Reversible neutropenia, thrombocytopenia, or anaemia developed in a few dogs treated with 8 or 10 mg/kg/day (total olanzapine exposure [AUC] is 12- to 15-fold greater than that of a man given a

12-mg dose). In cytopenic dogs, there were no adverse events on progenitor and proliferating cells in the bone marrow.

Reproductive toxicity

Olanzapine had no teratogenic effects. Sedation affected mating performance of male rats. Estrous cycles were affected at doses of 1.1 mg/kg (3 times the maximum human dose) and reproduction parameters were influenced in rats given 3 mg/kg (9 times the maximum human dose).

In the offspring of rats given olanzapine, delays in foetal development and transient decreases in offspring activity levels were seen.

Mutagenicity

Olanzapine was not mutagenic or clastogenic in a full range of standard tests, which included bacterial mutation tests and in vitro and in vivo mammalian tests.

Carcinogenicity

Based on the results of studies in mice and rats, it was concluded that olanzapine is not carcinogenic.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Mannitol E 421

Microcrystalline cellulose

Aspartame E 951

Crospovidone

Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months

6.4 Special precautions for storage

Store below 30 C

6.5 Nature and contents of container

Aluminium/aluminium blisters in cartons of 28, 56, 70, 98 tablets per carton.

Not all pack sizes may be marketed

6.6 Special precautions for disposal

No special requirements

7. MARKETING AUTHORISATION HOLDER

Glenmark Pharmaceuticals Europe Limited

Laxmi House

2-B Draycott Avenue

Kenton

Harrow

Middlesex

HA3 OBU

United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/587/010

EU/1/09/587/011

EU/1/09/587/012

EU/1/09/587/023

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 03 December 2009

Date of latest renewal: 19 August 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu

1. NAME OF THE MEDICINAL PRODUCT

Olanzapine Glenmark 15 mg tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 15 mg olanzapine.

Excipient with known effect: Each tablet contains 0.69 mg of aspartame

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Tablet

Yellow coloured circular flat bevelled edge tablets with ‘OL’ debossed on one side and ‘E’ debossed on other side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Adults

Olanzapine is indicated for the treatment of schizophrenia.

Olanzapine is effective in maintaining the clinical improvement during continuation therapy in patients who have shown an initial treatment response.

Olanzapine is indicated for the treatment of moderate to severe manic episode.

In patients whose manic episode has responded to olanzapine treatment, olanzapine is indicated for the prevention of recurrence in patients with bipolar disorder (see section 5.1).

4.2 Posology and method of administration

Adults

Schizophrenia: The recommended starting dose for olanzapine is 10 mg/day.

Manic episode: The starting dose is 15 mg as a single daily dose in monotherapy or 10 mg daily in combination therapy (see section 5.1).

Preventing recurrence in bipolar disorder: The recommended starting dose is 10 mg/day. For patients who have been receiving olanzapine for treatment of manic episode, continue therapy for preventing recurrence at the same dose. If a new manic, mixed, or depressive episode occurs, olanzapine treatment should be continued (with dose optimisation as needed), with supplementary therapy to treat mood symptoms, as clinically indicated.

During treatment for schizophrenia, manic episode and recurrence prevention in bipolar disorder, daily dosage may subsequently be adjusted on the basis of individual clinical status within the range 5-20 mg/day. An increase to a dose greater than the recommended starting dose is advised only after appropriate clinical reassessment and should generally occur at intervals of not less than 24 hours. Olanzapine can be given without regards for meals as absorption is not affected by food. Gradual tapering of the dose should be considered when discontinuing olanzapine.

Special populations

Elderly patients

A lower starting dose (5 mg/day) is not routinely indicated but should be considered for those 65 and over when clinical factors warrant (see section 4.4).

Patients with renal and/or hepatic impairment

A lower starting dose (5 mg) should be considered for such patients. In cases of moderate hepatic insufficiency (cirrhosis, Child-Pugh Class A or B), the starting dose should be 5 mg and only increased with caution.

Smokers

The starting dose and dose range need not be routinely altered for non-smokers relative to smokers. The metabolism of olanzapine may be induced by smoking. Clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.5).

When more than one factor is present which might result in slower metabolism (female gender, geriatric age, non-smoking status), consideration should be given to decreasing the starting dose. Dose escalation, when indicated, should be conservative in such patients (See sections 4.5 and 5.2.).

Paediatric population

Olanzapine is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy. A greater magnitude of weight gain, lipid and prolactin alterations has been reported in short term studies of adolescent patients than in studies of adult patients (see sections 4.4, 4.8, 5.1 and 5.2).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. Patients with known risk of narrow-angle glaucoma.

4.4 Special warnings and precautions for use

During antipsychotic treatment, improvement in the patient's clinical condition may take several days to some weeks. Patients should be closely monitored during this period.

Dementia-related psychosis and/or behavioural disturbances

Olanzapine is not recommended for use in patients with dementia-related psychosis and/or behavioural disturbances because of an increase in mortality and the risk of cerebrovascular accident.

In placebo-controlled clinical trials (6-12 weeks duration) of elderly patients (mean age 78 years) with dementia-related psychosis and/or disturbed behaviours, there was a 2-fold increase in the incidence of death in olanzapine-treated patients compared to patients treated with placebo (3.5 % versus 1.5 %, respectively). The higher incidence of death was not associated with olanzapine dose (mean daily dose 4.4 mg) or duration of treatment. Risk factors that may predispose this patient population to increased mortality include age > 65 years, dysphagia, sedation, malnutrition and dehydration, pulmonary conditions (e.g., pneumonia, with or without aspiration), or concomitant use of benzodiazepines. However, the incidence of death was higher in olanzapine-treated than in placebo- treated patients independent of these risk factors.

In the same clinical trials, cerebrovascular adverse events (CVAE e.g., stroke, transient ischemic attack), including fatalities, were reported. There was a 3-fold increase in CVAE in patients treated with olanzapine compared to patients treated with placebo (1.3 % versus 0.4 %, respectively). All olanzapine and placebo-treated patients who experienced a cerebrovascular event had pre-existing risk factors. Age > 75 years and vascular/mixed type dementia were identified as risk factors for

CVAE in association with olanzapine treatment. The efficacy of olanzapine was not established in these trials.

Parkinson's disease

The use of olanzapine in the treatment of dopamine agonist associated psychosis in patients with Parkinson's disease is not recommended.

In clinical trials, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo (see section 4.8), and olanzapine was not more effective than placebo in the treatment of psychotic symptoms.

In these trials, patients were initially required to be stable on the lowest effective dose of anti- Parkinsonian medicinal products (dopamine agonist) and to remain on the same anti-Parkinsonian medicinal products and dosages throughout the study. Olanzapine was started at 2.5 mg/day and titrated to a maximum of 15 mg/day based on investigator judgement.

Neuroleptic Malignant Syndrome (NMS)

NMS is a potentially life-threatening condition associated with antipsychotic medicinal products. Rare cases reported as NMS have also been received in association with olanzapine.

Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

If a patient develops signs and symptoms indicative of NMS, or presents with unexplained high fever without additional clinical manifestations of NMS, all antipsychotic medicines, including olanzapine must be discontinued.

Hyperglycaemia and diabetes

Hyperglycaemia and/or development or exacerbation of diabetes occasionally associated with ketoacidosis or coma has been reported uncommonly, including some fatal cases (see section 4.8). In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines, e.g. measuring of blood glucose at baseline, 12 weeks after starting olanzapine treatment and annually thereafter. Patients treated with any antipsychotic medicines, including olanzapine, should be observed for signs and symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia, and weakness) and patients with diabetes mellitus or with risk factors for diabetes mellitus should be monitored regularly for worsening of glucose control. Weight should be monitored regularly, e.g. at baseline, 4, 8 and 12 weeks after starting olanzapine treatment and quarterly thereafter.

Lipid alterations

Undesirable alterations in lipids have been observed in olanzapine-treated patients in placebo- controlled clinical trials (see section 4.8). Lipid alterations should be managed as clinically appropriate, particularly in dyslipidemic patients and in patients with risk factors for the development of lipids disorders. Patients treated with any antipsychotic medicines, including olanzapine, should be monitored regularly for lipids in accordance with utilised antipsychotic guidelines e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Anticholinergic activity

While olanzapine demonstrated anticholinergic activity in vitro, experience during the clinical trials revealed a low incidence of related events. However, as clinical experience with olanzapine in patients with concomitant illness is limited, caution is advised when prescribing for patients with prostatic hypertrophy, or paralytic ileus and related conditions.

Hepatic function

Transient, asymptomatic elevations of hepatic aminotransferases, alanine transferase (ALT), aspartate transferase (AST) have been seen commonly, especially in early treatment. Caution should be exercised and follow-up organised in patients with elevated ALT and/or AST, in patients with signs and symptoms of hepatic impairment, in patients with pre-existing conditions associated with limited hepatic functional reserve, and in patients who are being treated with potentially hepatotoxic medicines. In cases where hepatitis (including hepatocellular, cholestatic or mixed liver injury) has been diagnosed, olanzapine treatment should be discontinued.

Neutropenia

Caution should be exercised in patients with low leukocyte and/or neutrophil counts for any reason, in patients receiving medicines known to cause neutropenia, in patients with a history of drug-induced bone marrow depression/toxicity, in patients with bone marrow depression caused by concomitant illness, radiation therapy or chemotherapy and in patients with hypereosinophilic conditions or with myeloproliferative disease. Neutropenia has been reported commonly when olanzapine and valproate are used concomitantly (see section 4.8).

Discontinuation of treatment

Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea, or vomiting have been reported rarely (≥0.01% and < 0.1%) when olanzapine is stopped abruptly.

QT interval

In clinical trials, clinically meaningful QTc prolongations (Fridericia QT correction [QTcF] ≥ 500 milliseconds [msec] at any time post baseline in patients with baseline QTcF < 500 msec) were uncommon (0.1 % to 1 %) in patients treated with olanzapine, with no significant differences in associated cardiac events compared to placebo. However, as with other antipsychotics, caution should be exercised when olanzapine is prescribed with medicines known to increase QTc interval, especially in the elderly, in patients with congenital long QT syndrome, congestive heart failure, heart hypertrophy, hypokalaemia or hypomagnesaemia.

Thromboembolism

Temporal association of olanzapine treatment and venous thromboembolism has been reported uncommonly (≥ 0.1% and < 1%). A causal relationship between the occurrence of venous thromboembolism and treatment with olanzapine has not been established. However, since patients with schizophrenia often present with acquired risk factors for venous thromboembolism all possible risk factors of VTE e.g. immobilisation of patients, should be identified and preventive measures undertaken.

General CNS activity

Given the primary CNS effects of olanzapine, caution should be used when it is taken in combination with other centrally acting medicines and alcohol. As it exhibits in vitro dopamine antagonism, olanzapine may antagonize the effects of direct and indirect dopamine agonists.

Seizures

Olanzapine should be used cautiously in patients who have a history of seizures or are subject to factors, which may lower the seizure threshold.

Seizures have been reported to occur uncommonly in patients when treated with olanzapine. In most of these cases, a history of seizures or risk factors for seizures were reported.

Tardive Dyskinesia

In comparator studies of one year or less duration, olanzapine was associated with a statistically significant lower incidence of treatment emergent dyskinesia. However the risk of tardive dyskinesia increases with long-term exposure, and therefore if signs or symptoms of tardive dyskinesia appear in a patient on olanzapine, a dose reduction or discontinuation should be considered. These symptoms can temporally deteriorate or even arise after discontinuation of treatment.

Postural hypotension

Postural hypotension was infrequently observed in the elderly in olanzapine clinical trials. It is recommended that blood pressure is measured periodically in patients over 65 years.

Sudden cardiac death

In postmarketing reports with olanzapine, the event of sudden cardiac death has been reported in patients with olanzapine. In a retrospective observational cohort study, the risk of presumed sudden cardiac death in patients treated with olanzapine was approximately twice the risk in patients not using antipsychotics. In the study, the risk of olanzapine was comparable to the risk of atypical antipsychotics included in a pooled analysis.

Paediatric population

Olanzapine is not indicated for use in the treatment of children and adolescents. Studies in patients aged 13-17 years showed various adverse reactions, including weight gain, changes in metabolic parameters and increases in prolactin levels (see sections 4.8 and 5.1).

Phenylalanine

Olanzapine Glenmark tablet contains aspartame, which is a source of phenylalanine. May be harmful for people with phenylketonuria.

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Potential interactions affecting olanzapine

Since olanzapine is metabolised by CYP1A2, substances that can specifically induce or inhibit this isoenzyme may affect the pharmacokinetics of olanzapine.

Induction of CYP1A2

The metabolism of olanzapine may be induced by smoking and carbamazepine, which may lead to reduced olanzapine concentrations. Only slight to moderate increase in olanzapine clearance has been observed. The clinical consequences are likely to be limited, but clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.2).

Inhibition of CYP1A2

Fluvoxamine, a specific CYP1A2 inhibitor, has been shown to significantly inhibit the metabolism of olanzapine. The mean increase in olanzapine Cmax following fluvoxamine was 54 % in female nonsmokers and 77 % in male smokers. The mean increase in olanzapine AUC was 52 % and 108 % respectively. A lower starting dose of olanzapine should be considered in patients who are using fluvoxamine or any other CYP1A2 inhibitors, such as ciprofloxacin. A decrease in the dose of olanzapine should be considered if treatment with an inhibitor of CYP1A2 is initiated.

Decreased bioavailability

Activated charcoal reduces the bioavailability of oral olanzapine by 50 to 60 % and should be taken at least 2 hours before or after olanzapine.

Fluoxetine (a CYP2D6 inhibitor), single doses of antacid (aluminium, magnesium) or cimetidine have not been found to significantly affect the pharmacokinetics of olanzapine.

Potential for olanzapine to affect other medicinal products

Olanzapine may antagonise the effects of direct and indirect dopamine agonists.

Olanzapine does not inhibit the main CYP450 isoenzymes in vitro (e.g. 1A2, 2D6, 2C9, 2C19, 3A4). Thus no particular interaction is expected as verified through in vivo studies where no inhibition of metabolism of the following active substances was found: tricyclic antidepressant (representing mostly CYP2D6 pathway), warfarin (CYP2C9), theophylline (CYP1A2) or diazepam (CYP3A4 and

CYP2C19).

Olanzapine showed no interaction when co-administered with lithium or biperiden.

Therapeutic monitoring of valproate plasma levels did not indicate that valproate dosage adjustment is required after the introduction of concomitant olanzapine.

General CNS activity

Caution should be exercised in patients who consume alcohol or receive medicinal products that can cause central nervous system depression.

The concomitant use of olanzapine with anti-Parkinsonian medicinal products in patients with Parkinson's disease and dementia is not recommended (see section 4.4).

QTc interval

Caution should be used if olanzapine is being administered concomitantly with medicinal products known to increase QTc interval (see section 4.4).

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no adequate and well-controlled studies in pregnant women. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during treatment with olanzapine. Nevertheless, because human experience is limited, olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the foetus.

New born infants exposed to antipsychotics (including olanzapine) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully.

Breast feeding

In a study in breast- feeding, healthy women, olanzapine was excreted in breast milk. Mean infant exposure (mg/kg) at steady state was estimated to be 1.8 % of the maternal olanzapine dose (mg/kg). Patients should be advised not to breast- feed an infant if they are taking olanzapine.

Fertility

Effects on fertility are unknown (see section 5.3 for preclinical information).

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. Because olanzapine may cause somnolence and dizziness, patients should be cautioned about operating machinery, including motor vehicles.

4.8 Undesirable effects

Summary of the safety profile

Adults

The most frequently (seen in ≥ 1 % of patients) reported adverse reactions associated with the use of olanzapine in clinical trials were somnolence, weight gain, eosinophilia, elevated prolactin, cholesterol, glucose and triglyceride levels (see section 4.4), glucosuria, increased appetite, dizziness, akathisia, parkinsonism, leukopenia, neutropenia (see section 4.4), dyskinesia, orthostatic hypotension, anticholinergic effects, transient asymptomatic elevations of hepatic aminotransferases

(see section 4.4), rash, asthenia, fatigue, pyrexia, arthralgia, increased alkaline phosphatase, high gamma glutamyltransferase, high uric acid, high creatine phosphokinase and oedema.

Tabulated list of adverse reactions

The following table lists the adverse reactions and laboratory investigations observed from spontaneous reporting and in clinical trials. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the data available).

 

Very

Common

Uncommon

Rare

Not

 

common

 

 

 

known

Blood and the

 

Eosinophilia

 

Thrombocytopenia

 

lymphatic system

 

Leukopenia10

 

 

 

disorders

 

Neutropenia10

 

 

 

Immune system

 

 

Hypersensitivity11

 

 

disorders

 

 

 

 

 

Metabolism and

Weight gain 1

Elevated cholesterol

Development or

Hypothermia12

 

nutrition

 

levels2,3

exacerbation of

 

 

disorders

 

 

diabetes

 

 

 

 

Elevated glucose

occasionally

 

 

 

 

levels 4

associated with

 

 

 

 

 

ketoacidosis or

 

 

 

 

Elevated triglyceride

coma, including

 

 

 

 

levels 2,5

some fatal cases

 

 

 

 

 

(see section 4.4) 11

 

 

 

 

Glucosuria

 

 

 

 

 

Increased appetite

 

 

 

 

 

 

 

 

 

Nervous system

Somnolence

Dizziness

Seizures where in

Neuroleptic

 

disorders

 

 

most cases a history

malignant syndrome

 

 

 

Akathisia 6

of seizures or risk

(see section

 

 

 

 

factors for seizures

4.4)

 

 

 

Parkinsonism 6

were reported11

 

 

 

 

 

 

Discontinuation

 

 

 

Dyskinesia 6

 

Symptoms 7, 12

 

 

 

 

Dystonia (including

 

 

 

 

 

oculogyration)11

 

 

 

 

 

Tardive

 

 

 

 

 

dyskinesia11

 

 

 

 

 

Amnesia9

 

 

 

 

 

Dysarthria

 

 

 

 

 

Restless legs

 

 

 

 

 

syndrome

 

 

Cardiac

 

 

Bradycardia

Ventricular

 

disorders

 

 

QTc prolongation

tachycardia/fibrillati

 

 

 

 

(see section 4.4)

on, sudden death

 

 

 

 

 

(see section 4.4)11

 

Vascular

Orthostatic

 

Thromboembolism

 

 

disorders

hypotension10

 

(including

 

 

 

 

 

pulmonary

 

 

 

 

 

embolism and deep

 

 

 

 

 

vein thrombosis)

 

 

 

 

 

(see section 4.4)

 

 

Respiratory,

 

 

Epistaxis9

 

 

thoracic and

 

 

 

 

 

mediastinal

 

 

 

 

 

disorders

 

 

 

 

 

Gastrointestinal

 

Mild, transient

Abdominal

Pancreatitis11

 

disorders

 

anticholinergic

distension9

 

 

 

 

effects including

 

 

 

 

 

constipation and dry

 

 

 

 

 

mouth

 

 

 

Hepatobiliary

 

Transient,

 

Hepatitis

 

disorders

 

asymptomatic

 

(including

 

 

 

elevations of hepatic

 

hepatocellular,

 

 

 

aminotransferases

 

cholestatic or

 

 

 

(ALT, AST),

 

mixed

 

 

 

especially in

 

liver injury)11

 

 

 

early treatment (see

 

 

 

 

 

section 4.4)

 

 

 

Skin and

 

Rash

Photosensitivity

 

Drug

subcutaneous

 

 

reaction

 

reaction

tissue disorders

 

 

 

 

with

 

 

 

Alopecia

 

Eosinoph

 

 

 

 

 

ilia and

 

 

 

 

 

Systemic

 

 

 

 

 

Symptom

 

 

 

 

 

s

 

 

 

 

 

(DRESS)

Musculoskeletal

 

Arthralgia9

 

Rhabdomyolysis11

 

and connective

 

 

 

 

 

tissue disorders

 

 

 

 

 

Renal and

 

 

Urinary

 

 

urinary disorders

 

 

incontinence

 

 

 

 

 

Urinary retention

 

 

 

 

 

Urinary hesitation11

 

 

Pregnancy,

 

 

 

 

Drug

puerperium and

 

 

 

 

withdraw

perinatal

 

 

 

 

al

conditions

 

 

 

 

syndrom

 

 

 

 

 

e

 

 

 

 

 

neonatal

 

 

 

 

 

(see

 

 

 

 

 

section

 

 

 

 

 

4.6)

Reproductive

 

Erectile dysfunction

Amenorrhea

Priapism12

 

system and

 

in males

Breast enlargement

 

 

breast disorders

 

 

Galactorrhea in

 

 

 

 

Decreased libido in

females

 

 

 

 

males and females

Gymnaecomastia/br

 

 

 

 

 

east enlargement in

 

 

 

 

 

males

 

 

General

 

Asthenia

 

 

 

disorders and

 

Fatigue

 

 

 

administration

 

Oedema

 

 

 

site conditions

 

Pyrexia10

 

 

 

Investigations

Elevated

Increased alkaline

Increased total

 

 

 

plasma

phosphatase10

bilirubin

 

 

 

prolactin

High creatine

 

 

 

 

levels 8

phosphokinase11

 

 

 

 

 

High Gamma

 

 

 

 

 

Glutamyltransferase

 

 

 

 

 

 

 

 

 

 

High Uric Acid 10

 

 

 

1 Clinically significant weight gain was observed across all baseline Body Mass Index (BMI)

categories. Following short term treatment (median duration 47 days), weight gain ≥ 7 % of baseline body weight was very common (22.2%), ≥ 15% was common (4.2%) and ≥25% was uncommon

(0.8%). Patients gaining ≥7%, ≥15% and ≥25% of their baseline body weight with long-term exposure (at least 48 weeks) were very common (64.4 %, 31.7 % and 12.3 % respectively).

2Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline.

3Observed for fasting normal levels at baseline (< 5.17 mmol/l) which increased to high

(≥ 6.2 mmol/l). Changes in total fasting cholesterol levels from borderline at baseline (≥ 5.17- < 6.2 mmol/l) to high (≥ 6.2 mmol/l) were very common.

4Observed for fasting normal levels at baseline (< 5.56 mmol/l) which increased to high (≥ 7 mmol/l). Changes in fasting glucose from borderline at baseline (≥ 5.56 - < 7 mmol/l) to high (≥ 7 mmol/l) were very common.

5Observed for fasting normal levels at baseline (< 1.69 mmol/l) which increased to high

(≥ 2.26 mmol/l). Changes in fasting triglycerides from borderline at baseline (≥ 1.69 mmol/l - < 2.26 mmol/l) to high (≥ 2.26 mmol/l) were very common.

6In clinical trials, the incidence of Parkinsonism and dystonia in olanzapine-treated patients was numerically higher, but not statistically significantly different from placebo. Olanzapine-treated patients had a lower incidence of Parkinsonism, akathisia and dystonia compared with titrated doses of haloperidol. In the absence of detailed information on the pre-existing history of individual acute and tardive extrapyramidal movement disorders, it cannot be concluded at present that olanzapine produces less tardive dyskinesia and/or other tardive extrapyramidal syndromes.

7Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea and vomiting have been reported when olanzapine is stopped abruptly.

8In clinical trials of up to 12 weeks, plasma prolactin concentrations exceeded the upper limit of normal range in approximately 30% of olanzapine treated patients with normal baseline prolactin value. In the majority of these patients the elevations were generally mild, and remained below two times the upper limit of normal range.

9Adverse event identified from clinical trials in the Olanzapine Integrated Database.

10As assessed by measured values from clinical trials in the Olanzapine Integrated Database.

11Adverse event identified from spontaneous post-marketing reporting with frequency determined utilising the Olanzapine Integrated Database.

12Adverse event identified from spontaneous post-marketing reporting with frequency estimated at the upper limit of the 95% confidence interval utilising the Olanzapine Integrated Database.

Long-term exposure (at least 48 weeks)

The proportion of patients who had adverse, clinically significant changes in weight gain, glucose, total/LDL/HDL cholesterol or triglycerides increased over time. In adult patients who completed 9-12 months of therapy, the rate of increase in mean blood glucose slowed after approximately 6 months.

Additional information on special populations

In clinical trials in elderly patients with dementia, olanzapine treatment was associated with a higher incidence of death and cerebrovascular adverse reactions compared to placebo (see section 4.4). Very common adverse reactions associated with the use of olanzapine in this patient group were abnormal gait and falls. Pneumonia, increased body temperature, lethargy, erythema, visual hallucinations and urinary incontinence were observed commonly.

In clinical trials in patients with drug-induced (dopamine agonist) psychosis associated with

Parkinson’s disease, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo.

In one clinical trial in patients with bipolar mania, valproate combination therapy with olanzapine resulted in an incidence of neutropenia of 4.1 %; a potential contributing factor could be high plasma valproate levels. Olanzapine administered with lithium or valproate resulted in increased levels

(≥ 10 %) of tremor, dry mouth, increased appetite, and weight gain. Speech disorder was also reported commonly. During treatment with olanzapine in combination with lithium or divalproex, an increase of ≥ 7 % from baseline body weight occurred in 17.4 % of patients during acute treatment (up to 6 weeks). Long-term olanzapine treatment (up to 12 months) for recurrence prevention in patients with bipolar disorder was associated with an increase of ≥ 7 % from baseline body weight in 39.9 % of patients.

Paediatric population

Olanzapine is not indicated for the treatment of children and adolescent patients below 18 years. Although no clinical studies designed to compare adolescents to adults have been conducted, data from the adolescent trials were compared to those of the adult trials.

The following table summarises the adverse reactions reported with a greater frequency in adolescent patients (aged 13-17 years) than in adult patients or adverse reactions only identified during short- term clinical trials in adolescent patients. Clinically significant weight gain (≥ 7 %) appears to occur more frequently in the adolescent population compared to adults with comparable exposures. The magnitude of weight gain and the proportion of adolescent patients who had clinically significant weight gain were greater with long-term exposure (at least 24 weeks) than with short-term exposure.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10).

Metabolism and nutrition disorders

Very common: Weight gain 13, elevated triglyceride levels 14, increased appetite. Common: Elevated cholesterol levels 11

Nervous system disorders

Very common: Sedation (including: hypersomnia, lethargy, somnolence).

Gastrointestinal disorders

Common: Dry mouth

Hepatobiliary disorders

Very common: Elevations of hepatic aminotransferases (ALT/AST; see section 4.4).

Investigations

Very common: Decreased total bilirubin, increased GGT, elevated plasma prolactin levels 16

13Following short term treatment (median duration 22 days), weight gain ≥ 7 % of baseline body weight (kg) was very common (40.6 %), ≥ 15 %of baseline body weight was common (7.1 %) and ≥

25% was common (2.5 %). With long-term exposure (at least 24 weeks), 89.4 % gained ≥ 7 %, 55.3 % gained ≥ 15 % and 29.1 % gained ≥ 25% of their baseline body weight.

14Observed for fasting normal levels at baseline (< 1.016 mmol/l) which increased to high

(≥ 1.467 mmol/l) and changes in fasting triglycerides from borderline at baseline (≥ 1.016 mmol/l - < 1.467 mmol/l) to high (≥ 1.467 mmol/l).

15 Changes in total fasting cholesterol levels from normal at baseline (< 4.39 mmol/l) to high

(≥ 5.17 mmol/l) were observed commonly. Changes in total fasting cholesterol levels from borderline at baseline (≥ 4.39 - < 5.17 mmol/l) to high (≥ 5.17 mmol/l) were very common.

16 Elevated plasma prolactin levels were reported in 47.4 % of adolescent patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Signs and symptoms

Very common symptoms in overdose (> 10 % incidence) include tachycardia, agitation/ aggressiveness, dysarthria, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Other medically significant sequelae of overdose include delirium, convulsion, coma, possible neuroleptic malignant syndrome, respiratory depression, aspiration, hypertension or hypotension, cardiac arrhythmias (< 2 % of overdose cases) and cardiopulmonary arrest. Fatal outcomes have been reported for acute overdoses as low as 450 mg but survival has also been reported following acute overdose of approximately 2 g of oral olanzapine.

Management

There is no specific antidote for olanzapine. Induction of emesis is not recommended. Standard procedures for management of overdose may be indicated (i.e. gastric lavage, administration of activated charcoal). The concomitant administration of activated charcoal was shown to reduce the oral bioavailability of olanzapine by 50 to 60 %.

Symptomatic treatment and monitoring of vital organ function should be instituted according to clinical presentation, including treatment of hypotension and circulatory collapse and support of respiratory function. Do not use epinephrine, dopamine, or other sympathomimetic agents with beta- agonist activity since beta stimulation may worsen hypotension. Cardiovascular monitoring is necessary to detect possible arrhythmias. Close medical supervision and monitoring should continue until the patient recovers.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: psycholeptics, diazepines, oxazepines, thiazepines and oxepines, ATC code N05A H03.

Pharmacodynamic effects

Olanzapine is an antipsychotic, antimanic and mood stabilising agent that demonstrates a broad pharmacologic profile across a number of receptor systems.

In preclinical studies, olanzapine exhibited a range of receptor affinities (Ki < 100 nM) for serotonin

5HT2A/2C, 5HT3, 5HT6; dopamine D1, D2, D3, D4, D5; cholinergic muscarinic receptors M1-M5;

α1 adrenergic; and histamine H1 receptors. Animal behavioural studies with olanzapine indicated 5HT, dopamine, and cholinergic antagonism, consistent with the receptor-binding profile. Olanzapine demonstrated a greater in vitro affinity for serotonin 5HT2 than dopamine D2 receptors and greater 5HT2 than D2 activity in vivo, models. Electrophysiological studies demonstrated that olanzapine selectively reduced the firing of mesolimbic (A10) dopaminergic neurons, while having little effect on the striatal (A9) pathways involved in motor function. Olanzapine reduced a conditioned avoidance response, a test indicative of antipsychotic activity, at doses below those producing catalepsy, an effect indicative of motor side-effects. Unlike some other antipsychotic agents, olanzapine increases responding in an “anxiolytic” test.

In a single oral dose (10 mg) Positron Emission Tomography (PET) study in healthy volunteers, olanzapine produced a higher 5HT2A than dopamine D2 receptor occupancy. In addition, a Single Photon Emission Computed Tomography (SPECT) imaging study in schizophrenic patients revealed that olanzapine-responsive patients had lower striatal D2 occupancy than some other antipsychotic and risperidone-responsive patients, while being comparable to clozapine-responsive patients.

Clinical efficacy

In two of two placebo and two of three comparator controlled trials with over 2,900 schizophrenic patients presenting with both positive and negative symptoms, olanzapine was associated with statistically significantly greater improvements in negative as well as positive symptoms.

In a multinational, double-blind, comparative study of schizophrenia, schizoaffective, and related disorders which included 1,481 patients with varying degrees of associated depressive symptoms (baseline mean of 16.6 on the Montgomery-Asberg Depression Rating Scale), a prospective secondary analysis of baseline to endpoint mood score change demonstrated a statistically significant improvement (p= 0.001) favouring olanzapine (- 6.0) versus haloperidol (- 3.1).

In patients with a manic or mixed episode of bipolar disorder, olanzapine demonstrated superior efficacy to placebo and valproate semisodium (divalproex) in reduction of manic symptoms over 3 weeks. Olanzapine also demonstrated comparable efficacy results to haloperidol in terms of the

proportion of patients in symptomatic remission from mania and depression at 6 and 12 weeks. In a co-therapy study of patients treated with lithium or valproate for a minimum of 2 weeks, the addition of olanzapine 10 mg (co-therapy with lithium or valproate) resulted in a greater reduction in symptoms of mania than lithium or valproate monotherapy after 6 weeks.

In a 12-month recurrence prevention study in manic episode patients who achieved remission on olanzapine and were then randomised to olanzapine or placebo, olanzapine demonstrated statistically significant superiority over placebo on the primary endpoint of bipolar recurrence. Olanzapine also showed a statistically significant advantage over placebo in terms of preventing either recurrence into mania or recurrence into depression.

In a second 12-month recurrence prevention study in manic episode patients who achieved remission with a combination of olanzapine and lithium and were then randomised to olanzapine or lithium alone, olanzapine was statistically non-inferior to lithium on the primary endpoint of bipolar recurrence (olanzapine 30.0 %, lithium 38.3 %; p = 0.055).

In an 18-month co-therapy study in manic or mixed episode patients stabilised with olanzapine plus a mood stabiliser (lithium or valproate), long-term olanzapine co-therapy with lithium or valproate was not statistically significantly superior to lithium or valproate alone in delaying bipolar recurrence, defined according to syndromic (diagnostic) criteria.

Paediatric population

Controlled efficacy data in adolescents (ages 13 to 17 years) are limited to short term studies in schizophrenia (6 weeks) and mania associated with bipolar I disorder (3 weeks), involving less than 200 adolescents. Olanzapine was used as a flexible dose starting with 2.5 and ranging up to

20 mg/day. During treatment with olanzapine, adolescents gained significantly more weight compared with adults. The magnitude of changes in fasting total cholesterol, LDL cholesterol, triglycerides, and prolactin (see sections 4.4 and 4.8) were greater in adolescents than in adults. There are no controlled data on maintenance of effect or long term safety (see sections 4.4 and 4.8). Information on long term safety is primarily limited to open-label, uncontrolled data.

5.2 Pharmacokinetic properties

Absorption

Olanzapine is well absorbed after oral administration, reaching peak plasma concentrations within 5

to 8 hours. The absorption is not affected by food. Absolute oral bioavailability relative to intravenous administration has not been determined.

Distribution

The plasma protein binding of Olanzapine was about 93 % over the concentration range of about 7 to about 1000 ng/ml. Olanzapine is bound predominantly to albumin and α1-acid-glycoprotein.

Biotransformation

Olanzapine is metabolized in the liver by conjugative and oxidative pathways. The major circulating metabolite is the 10-N-glucuronide, which does not pass the blood brain barrier. Cytochromes P450-CYP1A2 and P450-CYP2D6 contribute to the formation of the N-desmethyl and 2-hydroxymethyl metabolites, both exhibited significantly less in vivo pharmacological activity than olanzapine in animal studies. The predominant pharmacologic activity is from the parent olanzapine.

Elimination

After oral administration, the mean terminal elimination half-life of olanzapine in healthy subjects varied on the basis of age and gender.

In healthy elderly (65 and over) versus non-elderly subjects, the mean elimination half-life was prolonged (51.8 versus 33.8 hr) and the clearance was reduced (17.5 versus 18.2 l/hr). The pharmacokinetic variability observed in the elderly is within the range for the non-elderly. In 44 patients with schizophrenia > 65 years of age, dosing from 5 to 20 mg/day was not associated with any distinguishing profile of adverse events.

In female versus male subjects the mean elimination half life was somewhat prolonged (36.7 versus 32.3 hrs) and the clearance was reduced (18.9 versus 27.3 l/hr). However, olanzapine (5-20 mg) demonstrated a comparable safety profile in female (n = 467) as in male patients (n = 869).

Renal impairment

In renally impaired patients (creatinine clearance < 10 ml/min) versus healthy subjects, there was no significant difference in mean elimination half-life (37.7 versus 32.4 hr) or clearance (21.2 versus 25.0 l/hr). A mass balance study showed that approximately 57 % of radiolabelled olanzapine appeared in urine, principally as metabolites.

Smokers

In smoking subjects with mild hepatic dysfunction, mean elimination half-life (39.3 hr) was prolonged and clearance (18.0 l/hr) was reduced analogous to non-smoking healthy subjects (48.8 hr and

14.1 l/hr, respectively).

In non-smoking versus smoking subjects (males and females) the mean elimination half-life was prolonged (38.6 versus 30.4 hr) and the clearance was reduced (18.6 versus 27.7 l/hr).

The plasma clearance of olanzapine is lower in elderly versus young subjects, in females versus males, and in non-smokers versus smokers. However, the magnitude of the impact of age, gender, or smoking on olanzapine clearance and half-life is small in comparison to the overall variability between individuals.

In a study of Caucasians, Japanese, and Chinese subjects, there were no differences in the pharmacokinetic parameters among the three populations.

Paediatric population Adolescents (ages 13 to 17 years):

The pharmacokinetics of olanzapine are similar between adolescents and adults. In clinical studies, the average olanzapine exposure was approximately 27 % higher in adolescents. Demographic differences between the adolescents and adults include a lower average body weight and fewer

adolescents were smokers. Such factors possibly contribute to the higher average exposure observed in adolescents.

5.3 Preclinical safety data

Acute (single-dose) toxicity

Signs of oral toxicity in rodents were characteristic of potent neuroleptic compounds: hypoactivity, coma, tremors, clonic convulsions, salivation, and depressed weight gain. The median lethal doses were approximately 210 mg/kg (mice) and 175 mg/kg (rats). Dogs tolerated single oral doses up to 100 mg/kg without mortality. Clinical signs included sedation, ataxia, tremors, increased heart rate, labored respiration, miosis, and anorexia. In monkeys, single oral doses up to 100 mg/kg resulted in prostration and, at higher doses, semi-consciousness.

Repeated-dose toxicity

In studies up to 3 months duration in mice and up to 1 year in rats and dogs, the predominant effects were CNS depression, anticholinergic effects, and peripheral haematological disorders. Tolerance developed to the CNS depression. Growth parameters were decreased at high doses. Reversible effects consistent with elevated prolactin in rats included decreased weights of ovaries and uterus and morphologic changes in vaginal epithelium and in mammary gland.

Haematologic toxicity:

Effects on haematology parameters were found in each species, including dose-related reductions in circulating leukocytes in mice and non-specific reductions of circulating leukocytes in rats; however, no evidence of bone marrow cytotoxicity was found. Reversible neutropenia, thrombocytopenia, or anaemia developed in a few dogs treated with 8 or 10 mg/kg/day (total olanzapine exposure [AUC] is 12- to 15-fold greater than that of a man given a 12-mg dose). In cytopenic dogs, there were no adverse events on progenitor and proliferating cells in the bone marrow.

Reproductive toxicity

Olanzapine had no teratogenic effects. Sedation affected mating performance of male rats. Estrous cycles were affected at doses of 1.1 mg/kg (3 times the maximum human dose) and reproduction parameters were influenced in rats given 3 mg/kg (9 times the maximum human dose). In the offspring of rats given olanzapine, delays in foetal development and transient decreases in offspring activity levels were seen.

Mutagenicity

Olanzapine was not mutagenic or clastogenic in a full range of standard tests, which included bacterial mutation tests and in vitro and in vivo mammalian tests.

Carcinogenicity

Based on the results of studies in mice and rats, it was concluded that olanzapine is not carcinogenic.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Mannitol E 421

Microcrystalline cellulose

Aspartame E 951

Crospovidone

Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months

6.4 Special precautions for storage

Store below 30 C

6.5 Nature and contents of container

Aluminium/aluminium blisters in cartons of 28, 56, 70, 98 tablets per carton

Not all pack sizes may be marketed

6.6 Special precautions for disposal

No special requirements

7. MARKETING AUTHORISATION HOLDER

Glenmark Pharmaceuticals Europe Limited

Laxmi House

2-B Draycott Avenue

Kenton

Harrow

Middlesex

HA3 OBU

United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/587/013

EU/1/09/587/014

EU/1/09/587/015

EU/1/09/587/024

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 03 December 2009

Date of latest renewal: 19 August 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu

1. NAME OF THE MEDICINAL PRODUCT

Olanzapine Glenmark 20 mg tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 20 mg olanzapine

Excipient with known effect: Each tablet contains 0.92 mg of aspartame

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Tablet

Yellow coloured circular flat bevelled edge with ‘OL’ debossed on one side and ‘F’ debossed on other side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Adults

Olanzapine is indicated for the treatment of schizophrenia.

Olanzapine is effective in maintaining the clinical improvement during continuation therapy in patients who have shown an initial treatment response.

Olanzapine is indicated for the treatment of moderate to severe manic episode.

In patients whose manic episode has responded to olanzapine treatment, olanzapine is indicated for the prevention of recurrence in patients with bipolar disorder (see section 5.1).

4.2 Posology and method of administration

Adults

Schizophrenia: The recommended starting dose for olanzapine is 10 mg/day.

Manic episode: The starting dose is 15 mg as a single daily dose in monotherapy or 10 mg daily in combination therapy (see section 5.1).

Preventing recurrence in bipolar disorder: The recommended starting dose is 10 mg/day. For patients who have been receiving olanzapine for treatment of manic episode, continue therapy for preventing recurrence at the same dose. If a new manic, mixed, or depressive episode occurs, olanzapine treatment should be continued (with dose optimisation as needed), with supplementary therapy to treat mood symptoms, as clinically indicated.

During treatment for schizophrenia, manic episode and recurrence prevention in bipolar disorder, daily dosage may subsequently be adjusted on the basis of individual clinical status within the range 5-20 mg/day. An increase to a dose greater than the recommended starting dose is advised only after appropriate clinical reassessment and should generally occur at intervals of not less than 24 hours. Olanzapine can be given without regards for meals as absorption is not affected by food. Gradual tapering of the dose should be considered when discontinuing olanzapine.

Special populations

Elderly patients

A lower starting dose (5 mg/day) is not routinely indicated but should be considered for those 65 and over when clinical factors warrant (see section 4.4).

Patients with renal and/or hepatic impairment

A lower starting dose (5 mg) should be considered for such patients. In cases of moderate hepatic insufficiency (cirrhosis, Child-Pugh Class A or B), the starting dose should be 5 mg and only increased with caution.

Smokers

The starting dose and dose range need not be routinely altered for non-smokers relative to smokers. The metabolism of olanzapine may be induced by smoking. Clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.5)

When more than one factor is present which might result in slower metabolism (female gender, geriatric age, non-smoking status), consideration should be given to decreasing the starting dose. Dose escalation, when indicated, should be conservative in such patients (See sections 4.5 and 5.2.).

Paediatric population

Olanzapine is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy. A greater magnitude of weight gain, lipid and prolactin alterations has been reported in short term studies of adolescent patients than in studies of adult patients (see sections 4.4, 4.8, 5.1 and 5.2).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. Patients with known risk of narrow-angle glaucoma.

4.4 Special warnings and precautions for use

During antipsychotic treatment, improvement in the patient's clinical condition may take several days to some weeks. Patients should be closely monitored during this period.

Dementia-related psychosis and/or behavioural disturbances

Olanzapine is not recommended for use patients with dementia-related psychosis and/or behavioural disturbances because of an increase in mortality and the risk of cerebrovascular accident.

In placebo-controlled clinical trials (6-12 weeks duration) of elderly patients (mean age 78 years) with dementia-related psychosis and/or disturbed behaviours, there was a 2-fold increase in the incidence of death in olanzapine-treated patients compared to patients treated with placebo (3.5 % versus 1.5 %, respectively). The higher incidence of death was not associated with olanzapine dose (mean daily dose 4.4 mg) or duration of treatment. Risk factors that may predispose this patient population to increased mortality include age > 65 years, dysphagia, sedation, malnutrition and dehydration, pulmonary conditions (e.g., pneumonia, with or without aspiration), or concomitant use of benzodiazepines. However, the incidence of death was higher in olanzapine-treated than in placebo- treated patients independent of these risk factors.

In the same clinical trials, cerebrovascular adverse events (CVAE e.g., stroke, transient ischemic attack), including fatalities, were reported. There was a 3-fold increase in CVAE in patients treated with olanzapine compared to patients treated with placebo (1.3 % versus 0.4 %, respectively). All olanzapine and placebo-treated patients who experienced a cerebrovascular event had pre-existing risk factors. Age > 75 years and vascular/mixed type dementia were identified as risk factors for CVAE in association with olanzapine treatment. The efficacy of olanzapine was not established in

these trials.

Parkinson's disease

The use of olanzapine in the treatment of dopamine agonist associated psychosis in patients with Parkinson's disease is not recommended. In clinical trials, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo (see section 4.8), and olanzapine was not more effective than placebo in the treatment of psychotic symptoms. In these trials, patients were initially required to be stable on the lowest effective dose of anti- Parkinsonian medicinal products (dopamine agonist) and to remain on the same anti-Parkinsonian medicinal products and dosages throughout the study. Olanzapine was started at 2.5 mg/day and titrated to a maximum of 15 mg/day based on investigator judgement.

Neuroleptic Malignant Syndrome (NMS)

NMS is a potentially life-threatening condition associated with antipsychotic medicinal products. Rare cases reported as NMS have also been received in association with olanzapine. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure. If a patient develops signs and symptoms indicative of NMS, or presents with unexplained high fever without additional clinical manifestations of NMS, all antipsychotic medicines, including olanzapine must be discontinued.

Hyperglycaemia and diabetes

Hyperglycaemia and/or development or exacerbation of diabetes occasionally associated with ketoacidosis or coma has been reported uncommonly, including some fatal cases (see section 4.8). In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines, e.g. measuring of blood glucose at baseline, 12 weeks after starting olanzapine treatment and annually thereafter. Patients treated with any antipsychotic medicines, including olanzapine, should be observed for signs and symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia, and weakness) and patients with diabetes mellitus or with risk factors for diabetes mellitus should be monitored regularly for worsening of glucose control. Weight should be monitored regularly, e.g. at baseline, 4, 8 and 12 weeks after starting olanzapine treatment and quarterly thereafter.

Lipid alterations

Undesirable alterations in lipids have been observed in olanzapine-treated patients in placebo- controlled clinical trials (see section 4.8). Lipid alterations should be managed as clinically appropriate, particularly in dyslipidemic patients and in patients with risk factors for the development of lipids disorders. Patients treated with any antipsychotic medicines, including olanzapine, should be monitored regularly for lipids in accordance with utilised antipsychotic guidelines e.g. at baseline, 12 weeks after starting olanzapine treatment and every 5 years thereafter.

Anticholinergic activity

While olanzapine demonstrated anticholinergic activity in vitro, experience during the clinical trials revealed a low incidence of related events. However, as clinical experience with olanzapine in patients with concomitant illness is limited, caution is advised when prescribing for patients with prostatic hypertrophy, or paralytic ileus and related conditions.

Hepatic function

Transient, asymptomatic elevations of hepatic aminotransferases, alanine transferase (ALT), aspartate transferase (AST) have been seen commonly, especially in early treatment. Caution should be exercised and follow-up organised in patients with elevated ALT and/or AST, in patients with signs and symptoms of hepatic impairment, in patients with pre-existing conditions associated with limited hepatic functional reserve, and in patients who are being treated with potentially hepatotoxic medicines. In cases where hepatitis (including hepatocellular, cholestatic or mixed liver injury) has been diagnosed, olanzapine treatment should be discontinued.

Neutropenia

Caution should be exercised in patients with low leukocyte and/or neutrophil counts for any reason, in patients receiving medicines known to cause neutropenia, in patients with a history of drug-induced bone marrow depression/toxicity, in patients with bone marrow depression caused by concomitant illness, radiation therapy or chemotherapy and in patients with hypereosinophilic conditions or with myeloproliferative disease. Neutropenia has been reported commonly when olanzapine and valproate are used concomitantly (see section 4.8).

Discontinuation of treatment

Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea, or vomiting have been reported rarely (≥0.01% and < 0.1%) when olanzapine is stopped abruptly.

QT interval

In clinical trials, clinically meaningful QTc prolongations (Fridericia QT correction [QTcF] ≥ 500 milliseconds [msec] at any time post baseline in patients with baseline QTcF < 500 msec) were uncommon (0.1 % to 1 %) in patients treated with olanzapine, with no significant differences in associated cardiac events compared to placebo. However, as with other antipsychotics, caution should be exercised when olanzapine is prescribed with medicines known to increase QTc interval, especially in the elderly, in patients with congenital long QT syndrome, congestive heart failure, heart hypertrophy, hypokalaemia or hypomagnesaemia.

Thromboembolism

Temporal association of olanzapine treatment and venous thromboembolism has been reported uncommonly (≥ 0.1% and < 1%). A causal relationship between the occurrence of venous thromboembolism and treatment with olanzapine has not been established. However, since patients with schizophrenia often present with acquired risk factors for venous thromboembolism all possible risk factors of VTE e.g. immobilisation of patients, should be identified and preventive measures undertaken.

General CNS activity

Given the primary CNS effects of olanzapine, caution should be used when it is taken in combination with other centrally acting medicines and alcohol. As it exhibits in vitro dopamine antagonism, olanzapine may antagonize the effects of direct and indirect dopamine agonists.

Seizures

Olanzapine should be used cautiously in patients who have a history of seizures or are subject to factors, which may lower the seizure threshold. Seizures have been reported to occur uncommonly in patients when treated with olanzapine. In most of these cases, a history of seizures or risk factors for seizures were reported.

Tardive Dyskinesia

In comparator studies of one year or less duration, olanzapine was associated with a statistically significant lower incidence of treatment emergent dyskinesia. However the risk of tardive dyskinesia increases with long-term exposure, and therefore if signs or symptoms of tardive dyskinesia appear in a patient on olanzapine, a dose reduction or discontinuation should be considered. These symptoms can temporally deteriorate or even arise after discontinuation of treatment.

Postural hypotension

Postural hypotension was infrequently observed in the elderly in olanzapine clinical trials. It is recommended that blood pressure is measured periodically in patients over 65 years.

Sudden cardiac death

In postmarketing reports with olanzapine, the event of sudden cardiac death has been reported in patients with olanzapine. In a retrospective observational cohort study, the risk of presumed sudden cardiac death in patients treated with olanzapine was approximately twice the risk in patients not

using antipsychotics. In the study, the risk of olanzapine was comparable to the risk of atypical antipsychotics included in a pooled analysis.

Paediatric population

Olanzapine is not indicated for use in the treatment of children and adolescents. Studies in patients aged 13-17 years showed various adverse reactions, including weight gain, changes in metabolic parameters and increases in prolactin levels (see sections 4.8 and 5.1).

Phenylalanine

Olanzapine Glenmark tablet contains aspartame, which is a source of phenylalanine. May be harmful for people with phenylketonuria.

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Potential interactions affecting olanzapine

Since olanzapine is metabolised by CYP1A2, substances that can specifically induce or inhibit this isoenzyme may affect the pharmacokinetics of olanzapine.

Induction of CYP1A2

The metabolism of olanzapine may be induced by smoking and carbamazepine, which may lead to reduced olanzapine concentrations. Only slight to moderate increase in olanzapine clearance has been observed. The clinical consequences are likely to be limited, but clinical monitoring is recommended and an increase of olanzapine dose may be considered if necessary (see section 4.2).

Inhibition of CYP1A2

Fluvoxamine, a specific CYP1A2 inhibitor, has been shown to significantly inhibit the metabolism of olanzapine. The mean increase in olanzapine Cmax following fluvoxamine was 54 % in female nonsmokers and 77 % in male smokers. The mean increase in olanzapine AUC was 52 % and 108 % respectively. A lower starting dose of olanzapine should be considered in patients who are using fluvoxamine or any other CYP1A2 inhibitors, such as ciprofloxacin. A decrease in the dose of olanzapine should be considered if treatment with an inhibitor of CYP1A2 is initiated.

Decreased bioavailability

Activated charcoal reduces the bioavailability of oral olanzapine by 50 to 60 % and should be taken at least 2 hours before or after olanzapine.

Fluoxetine (a CYP2D6 inhibitor), single doses of antacid (aluminium, magnesium) or cimetidine have not been found to significantly affect the pharmacokinetics of olanzapine.

Potential for olanzapine to affect other medicinal products

Olanzapine may antagonise the effects of direct and indirect dopamine agonists.

Olanzapine does not inhibit the main CYP450 isoenzymes in vitro (e.g. 1A2, 2D6, 2C9, 2C19, 3A4). Thus no particular interaction is expected as verified through in vivo studies where no inhibition of metabolism of the following active substances was found: tricyclic antidepressant (representing mostly CYP2D6 pathway), warfarin (CYP2C9), theophylline (CYP1A2) or diazepam (CYP3A4 and CYP2C19).

Olanzapine showed no interaction when co-administered with lithium or biperiden.

Therapeutic monitoring of valproate plasma levels did not indicate that valproate dosage adjustment is required after the introduction of concomitant olanzapine.

General CNS activity

Caution should be exercised in patients who consume alcohol or receive medicinal products that can cause central nervous system depression.

The concomitant use of olanzapine with anti-Parkinsonian medicinal products in patients with Parkinson's disease and dementia is not recommended (see section 4.4).

QTc interval

Caution should be used if olanzapine is being administered concomitantly with medicinal products known to increase QTc interval (see section 4.4).

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no adequate and well-controlled studies in pregnant women. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during treatment with olanzapine. Nevertheless, because human experience is limited, olanzapine should be used in pregnancy only if the potential benefit justifies the potential risk to the foetus.

New born infants exposed to antipsychotics (including olanzapine) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully.

Breast feeding

In a study in breast- feeding, healthy women, olanzapine was excreted in breast milk. Mean infant exposure (mg/kg) at steady state was estimated to be 1.8 % of the maternal olanzapine dose (mg/kg).

Patients should be advised not to breast- feed an infant if they are taking olanzapine.

Fertility

Effects on fertility are unknown (see section 5.3 for preclinical information).

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. Because olanzapine may cause somnolence and dizziness, patients should be cautioned about operating machinery, including motor vehicles.

4.8 Undesirable effects

Summary of the safety profile

Adults

The most frequently (seen in ≥ 1 % of patients) reported adverse reactions associated with the use of olanzapine in clinical trials were somnolence, weight gain, eosinophilia, elevated prolactin, cholesterol, glucose and triglyceride levels (see section 4.4), glucosuria, increased appetite, dizziness, akathisia, parkinsonism, leukopenia, neutropenia (see section 4.4), dyskinesia, orthostatic hypotension, anticholinergic effects, transient asymptomatic elevations of hepatic aminotransferases (see section 4.4), rash, asthenia, fatigue, pyrexia, arthralgia, increased alkaline phosphatase, high gamma glutamyltransferase, high uric acid, high creatine phosphokinase and oedema.

Tabulated list of adverse reactions

The following table lists the adverse reactions and laboratory investigations observed from spontaneous reporting and in clinical trials. Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very

common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the data available).

 

Very

Common

Uncommon

Rare

Not

 

common

 

 

 

known

Blood and the

 

Eosinophilia

 

Thrombocytopenia

 

lymphatic system

 

Leukopenia10

 

 

 

disorders

 

Neutropenia10

 

 

 

Immune system

 

 

Hypersensitivity11

 

 

disorders

 

 

 

 

 

Metabolism and

Weight gain 1

Elevated cholesterol

Development or

Hypothermia12

 

nutrition

 

levels2,3

exacerbation of

 

 

disorders

 

 

diabetes

 

 

 

 

Elevated glucose

occasionally

 

 

 

 

levels 4

associated with

 

 

 

 

 

ketoacidosis or

 

 

 

 

Elevated triglyceride

coma, including

 

 

 

 

levels 2,5

some fatal cases

 

 

 

 

 

(see section 4.4) 11

 

 

 

 

Glucosuria

 

 

 

 

 

Increased appetite

 

 

 

 

 

 

 

 

 

Nervous system

Somnolence

Dizziness

Seizures where in

Neuroleptic

 

disorders

 

 

most cases a

malignant syndrome

 

 

 

Akathisia 6

history of seizures

(see section

 

 

 

 

or risk factors for

4.4)

 

 

 

Parkinsonism 6

seizures were

 

 

 

 

 

reported11

Discontinuation

 

 

 

Dyskinesia 6

 

Symptoms 7, 12

 

 

 

 

Dystonia

 

 

 

 

 

(including

 

 

 

 

 

oculogyration)11

 

 

 

 

 

Tardive

 

 

 

 

 

dyskinesia11

 

 

 

 

 

Amnesia9

 

 

 

 

 

Dysarthria

 

 

 

 

 

Restless legs

 

 

 

 

 

syndrome

 

 

Cardiac

 

 

Bradycardia

Ventricular

 

disorders

 

 

QTc prolongation

tachycardia/fibrillati

 

 

 

 

(see section 4.4)

on, sudden death

 

 

 

 

 

(see section 4.4)11

 

Vascular

Orthostatic

 

Thromboembolis

 

 

disorders

hypotension10

 

m (including

 

 

 

 

 

pulmonary

 

 

 

 

 

embolism and

 

 

 

 

 

deep vein

 

 

 

 

 

thrombosis) (see

 

 

 

 

 

section 4.4)

 

 

Respiratory,

 

 

Epistaxis9

 

 

thoracic and

 

 

 

 

 

mediastinal

 

 

 

 

 

disorders

 

 

 

 

 

Gastrointestinal

 

Mild, transient

Abdominal

Pancreatitis11

 

disorders

 

anticholinergic

distension9

 

 

 

 

effects including

 

 

 

 

 

constipation and dry

 

 

 

 

 

mouth

 

 

 

Hepatobiliary

 

Transient,

 

Hepatitis

 

disorders

 

asymptomatic

 

(including

 

 

 

elevations of hepatic

 

hepatocellular,

 

 

 

aminotransferases(A

 

cholestatic or

 

 

 

LT, AST), especially

 

mixed

 

 

 

in

 

liver injury)11

 

 

 

early treatment (see

 

 

 

 

 

section 4.4)

 

 

 

Skin and

 

Rash

Photosensitivity

 

Drug

subcutaneous

 

 

reaction

 

reaction

tissue disorders

 

 

 

 

with

 

 

 

Alopecia

 

Eosinophili

 

 

 

 

 

a and

 

 

 

 

 

Systemic

 

 

 

 

 

Symptoms

 

 

 

 

 

(DRESS)

Musculoskeletal

 

Arthralgia 9

 

Rhabdomyolysis11

 

and connective

 

 

 

 

 

tissue disorders

 

 

 

 

 

Renal and

 

 

Urinary

 

 

urinary disorders

 

 

incontinence

 

 

 

 

 

Urinary retention

 

 

 

 

 

Urinary

 

 

 

 

 

hesitation11

 

 

Pregnancy,

 

 

 

 

Drug

puerperium and

 

 

 

 

withdrawal

perinatal

 

 

 

 

syndrome

conditions

 

 

 

 

neonatal

 

 

 

 

 

(see

 

 

 

 

 

section

 

 

 

 

 

4.6)

Reproductive

 

Erectile dysfunction

Amenorrhea

Priapism12

 

system and

 

in males

Breast

 

 

breast disorders

 

 

enlargement

 

 

 

 

Decreased libido in

Galactorrhea in

 

 

 

 

males and females

females

 

 

 

 

 

Gymnaecomastia/

 

 

 

 

 

breast

 

 

 

 

 

enlargement in

 

 

 

 

 

males

 

 

General

 

Asthenia

 

 

 

disorders and

 

Fatigue

 

 

 

administration

 

Oedema

 

 

 

site conditions

 

Pyrexia10

 

 

 

Investigations

Elevated

Increased alkaline

Increased total

 

 

 

plasma

phosphatase10

bilirubin

 

 

 

prolactin

High creatine

 

 

 

 

levels 8

phosphokinase11

 

 

 

 

 

High Gamma

 

 

 

 

 

Glutamyltransferase

 

 

 

 

 

 

 

 

 

 

High uric acid 10

 

 

 

1 Clinically significant weight gain was observed across all baseline Body Mass Index (BMI) categories. Following short term treatment (median duration 47 days), weight gain ≥ 7 % of baseline body weight was very common (22.2%), ≥ 15% was common (4.2%) and ≥25% was uncommon

(0.8%). Patients gaining ≥7%, ≥15% and ≥25% of their baseline body weight with long-term exposure (at least 48 weeks) were very common (64.4 %, 31.7 % and 12.3 % respectively).

2Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline.

3Observed for fasting normal levels at baseline (< 5.17 mmol/l) which increased to high

(≥ 6.2 mmol/l). Changes in total fasting cholesterol levels from borderline at baseline (≥ 5.17- < 6.2 mmol/l) to high (≥ 6.2 mmol/l) were very common.

4Observed for fasting normal levels at baseline (< 5.56 mmol/l) which increased to high (≥ 7 mmol/l). Changes in fasting glucose from borderline at baseline (≥ 5.56 - < 7 mmol/l) to high (≥ 7 mmol/l) were very common.

5Observed for fasting normal levels at baseline (< 1.69 mmol/l) which increased to high

(≥ 2.26 mmol/l). Changes in fasting triglycerides from borderline at baseline (≥ 1.69 mmol/l - < 2.26 mmol/l) to high (≥ 2.26 mmol/l) were very common.

6In clinical trials, the incidence of Parkinsonism and dystonia in olanzapine-treated patients was numerically higher, but not statistically significantly different from placebo. Olanzapine-treated patients had a lower incidence of Parkinsonism, akathisia and dystonia compared with titrated doses of haloperidol. In the absence of detailed information on the pre-existing history of individual acute and tardive extrapyramidal movement disorders, it cannot be concluded at present that olanzapine produces less tardive dyskinesia and/or other tardive extrapyramidal syndromes.

7Acute symptoms such as sweating, insomnia, tremor, anxiety, nausea and vomiting have been reported when olanzapine is stopped abruptly.

8In clinical trials of up to 12 weeks, plasma prolactin concentrations exceeded the upper limit of normal range in approximately 30% of olanzapine treated patients with normal baseline prolactin value. In the majority of these patients the elevations were generally mild, and remained below two times the upper limit of normal range.

9Adverse event identified from clinical trials in the Olanzapine Integrated Database.

10As assessed by measured values from clinical trials in the Olanzapine Integrated Database.

11Adverse event identified from spontaneous post-marketing reporting with frequency determined utilising the Olanzapine Integrated Database.

12Adverse event identified from spontaneous post-marketing reporting with frequency estimated at the upper limit of the 95% confidence interval utilising the Olanzapine Integrated Database.

Long-term exposure (at least 48 weeks)

The proportion of patients who had adverse, clinically significant changes in weight gain, glucose, total/LDL/HDL cholesterol or triglycerides increased over time. In adult patients who completed 9-12 months of therapy, the rate of increase in mean blood glucose slowed after approximately 6 months.

Additional information on special populations

In clinical trials in elderly patients with dementia, olanzapine treatment was associated with a higher incidence of death and cerebrovascular adverse reactions compared to placebo (see section 4.4). Very common adverse reactions associated with the use of olanzapine in this patient group were abnormal gait and falls. Pneumonia, increased body temperature, lethargy, erythema, visual hallucinations and urinary incontinence were observed commonly.

In clinical trials in patients with drug-induced (dopamine agonist) psychosis associated with

Parkinson’s disease, worsening of Parkinsonian symptomatology and hallucinations were reported very commonly and more frequently than with placebo.

In one clinical trial in patients with bipolar mania, valproate combination therapy with olanzapine resulted in an incidence of neutropenia of 4.1 %; a potential contributing factor could be high plasma valproate levels. Olanzapine administered with lithium or valproate resulted in increased levels

(≥ 10 %) of tremor, dry mouth, increased appetite, and weight gain. Speech disorder was also reported commonly. During treatment with olanzapine in combination with lithium or divalproex, an increase of ≥ 7 % from baseline body weight occurred in 17.4 % of patients during acute treatment (up to 6 weeks). Long-term olanzapine treatment (up to 12 months) for recurrence prevention in patients with bipolar disorder was associated with an increase of ≥ 7 % from baseline body weight in 39.9 % of patients.

Paediatric population

Olanzapine is not indicated for the treatment of children and adolescent patients below 18 years. Although no clinical studies designed to compare adolescents to adults have been conducted, data from the adolescent trials were compared to those of the adult trials.

The following table summarises the adverse reactions reported with a greater frequency in adolescent patients (aged 13-17 years) than in adult patients or adverse reactions only identified during short- term clinical trials in adolescent patients. Clinically significant weight gain (≥ 7 %) appears to occur more frequently in the adolescent population compared to adults with comparable exposures. The magnitude of weight gain and the proportion of adolescent patients who had clinically significant weight gain were greater with long-term exposure (at least 24 weeks) than with short-term exposure.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. The frequency terms listed are defined as follows: Very common (≥ 1/10), common (≥ 1/100 to < 1/10).

Metabolism and nutrition disorders

Very common: Weight gain 13, elevated triglyceride levels 14, increased appetite. Common: Elevated cholesterol levels 15

Nervous system disorders

Very common: Sedation (including: hypersomnia, lethargy, somnolence).

Gastrointestinal disorders

Common: Dry mouth

Hepatobiliary disorders

Very common: Elevations of hepatic aminotransferases (ALT/AST; see section 4.4).

Investigations

Very common: Decreased total bilirubin, increased GGT, elevated plasma prolactin levels 16

13Following short term treatment (median duration 22 days), weight gain ≥ 7 % of baseline body weight (kg) was very common (40.6 %), ≥ 15 %of baseline body weight was common (7.1 %) and ≥

25% was common (2.5 %). With long-term exposure (at least 24 weeks), 89.4 % gained ≥ 7 %, 55.3 % gained ≥ 15 % and 29.1 % gained ≥ 25% of their baseline body weight.

14Observed for fasting normal levels at baseline (< 1.016 mmol/l) which increased to high

(≥ 1.467 mmol/l) and changes in fasting triglycerides from borderline at baseline (≥ 1.016 mmol/l - < 1.467 mmol/l) to high (≥ 1.467 mmol/l).

15 Changes in total fasting cholesterol levels from normal at baseline (< 4.39 mmol/l) to high

(≥ 5.17 mmol/l) were observed commonly. Changes in total fasting cholesterol levels from borderline at baseline (≥ 4.39 - < 5.17 mmol/l) to high (≥ 5.17 mmol/l) were very common.

16 Elevated plasma prolactin levels were reported in 47.4 % of adolescent patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Signs and symptoms

Very common symptoms in overdose (> 10 % incidence) include tachycardia, agitation/ aggressiveness, dysarthria, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Other medically significant sequelae of overdose include delirium, convulsion, coma, possible neuroleptic malignant syndrome, respiratory depression, aspiration, hypertension or hypotension, cardiac arrhythmias (< 2 % of overdose cases) and cardiopulmonary arrest. Fatal outcomes have been reported for acute overdoses as low as 450 mg but survival has also been reported following acute overdose of approximately 2 g of oral olanzapine.

Management

There is no specific antidote for olanzapine. Induction of emesis is not recommended. Standard procedures for management of overdose may be indicated (i.e. gastric lavage, administration of activated charcoal). The concomitant administration of activated charcoal was shown to reduce the oral bioavailability of olanzapine by 50 to 60 %.

Symptomatic treatment and monitoring of vital organ function should be instituted according to clinical presentation, including treatment of hypotension and circulatory collapse and support of respiratory function. Do not use epinephrine, dopamine, or other sympathomimetic agents with beta- agonist activity since beta stimulation may worsen hypotension. Cardiovascular monitoring is necessary to detect possible arrhythmias. Close medical supervision and monitoring should continue until the patient recovers.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: psycholeptics, diazepines, oxazepines, thiazepines and oxepines, ATC code N05A H03.

Pharmacodynamic effects

Olanzapine is an antipsychotic, antimanic and mood stabilising agent that demonstrates a broad pharmacologic profile across a number of receptor systems.

In preclinical studies, olanzapine exhibited a range of receptor affinities (Ki < 100 nM) for serotonin

5HT2A/2C, 5HT3, 5HT6; dopamine D1, D2, D3, D4, D5; cholinergic muscarinic receptors M1-M5;

α1 adrenergic; and histamine H1 receptors. Animal behavioural studies with olanzapine indicated 5HT, dopamine, and cholinergic antagonism, consistent with the receptor-binding profile. Olanzapine demonstrated a greater in vitro affinity for serotonin 5HT2 than dopamine D2 receptors and greater 5HT2 than D2 activity in vivo, models. Electrophysiological studies demonstrated that olanzapine selectively reduced the firing of mesolimbic (A10) dopaminergic neurons, while having little effect on the striatal (A9) pathways involved in motor function. Olanzapine reduced a conditioned avoidance response, a test indicative of antipsychotic activity, at doses below those producing catalepsy, an effect indicative of motor side-effects. Unlike some other antipsychotic agents, olanzapine increases responding in an “anxiolytic” test.

In a single oral dose (10 mg) Positron Emission Tomography (PET) study in healthy volunteers,

olanzapine produced a higher 5HT2A than dopamine D2 receptor occupancy. In addition, a Single Photon Emission Computed Tomography (SPECT) imaging study in schizophrenic patients revealed that olanzapine-responsive patients had lower striatal D2 occupancy than some other antipsychotic and risperidone-responsive patients, while being comparable to clozapine-responsive patients.

Clinical efficacy

In two of two placebo and two of three comparator controlled trials with over 2,900 schizophrenic patients presenting with both positive and negative symptoms, olanzapine was associated with statistically significantly greater improvements in negative as well as positive symptoms.

In a multinational, double-blind, comparative study of schizophrenia, schizoaffective, and related disorders which included 1,481 patients with varying degrees of associated depressive symptoms (baseline mean of 16.6 on the Montgomery-Asberg Depression Rating Scale), a prospective secondary analysis of baseline to endpoint mood score change demonstrated a statistically significant improvement (p= 0.001) favouring olanzapine (- 6.0) versus haloperidol (- 3.1).

In patients with a manic or mixed episode of bipolar disorder, olanzapine demonstrated superior efficacy to placebo and valproate semisodium (divalproex) in reduction of manic symptoms over 3 weeks. Olanzapine also demonstrated comparable efficacy results to haloperidol in terms of the

proportion of patients in symptomatic remission from mania and depression at 6 and 12 weeks. In a co-therapy study of patients treated with lithium or valproate for a minimum of 2 weeks, the addition of olanzapine 10 mg (co-therapy with lithium or valproate) resulted in a greater reduction in symptoms of mania than lithium or valproate monotherapy after 6 weeks.

In a 12-month recurrence prevention study in manic episode patients who achieved remission on olanzapine and were then randomised to olanzapine or placebo, olanzapine demonstrated statistically significant superiority over placebo on the primary endpoint of bipolar recurrence. Olanzapine also showed a statistically significant advantage over placebo in terms of preventing either recurrence into mania or recurrence into depression.

In a second 12-month recurrence prevention study in manic episode patients who achieved remission with a combination of olanzapine and lithium and were then randomised to olanzapine or lithium alone, olanzapine was statistically non-inferior to lithium on the primary endpoint of bipolar recurrence (olanzapine 30.0 %, lithium 38.3 %; p = 0.055).

In an 18-month co-therapy study in manic or mixed episode patients stabilised with olanzapine plus a mood stabiliser (lithium or valproate), long-term olanzapine co-therapy with lithium or valproate was not statistically significantly superior to lithium or valproate alone in delaying bipolar recurrence, defined according to syndromic (diagnostic) criteria.

Paediatric population

Controlled efficacy data in adolescents (ages 13 to 17 years) are limited to short term studies in schizophrenia (6 weeks) and mania associated with bipolar I disorder (3 weeks), involving less than 200 adolescents. Olanzapine was used as a flexible dose starting with 2.5 and ranging up to

20 mg/day. During treatment with olanzapine, adolescents gained significantly more weight compared with adults. The magnitude of changes in fasting total cholesterol, LDL cholesterol, triglycerides, and prolactin (see sections 4.4 and 4.8) were greater in adolescents than in adults. There are no controlled data on maintenance of effect or long term safety (see sections 4.4 and 4.8). Information on long term safety is primarily limited to open-label, uncontrolled data.

5.2 Pharmacokinetic properties

Absorption

Olanzapine is well absorbed after oral administration, reaching peak plasma concentrations within 5 to 8 hours. The absorption is not affected by food. Absolute oral bioavailability relative to intravenous administration has not been determined.

Distribution

The plasma protein binding of Olanzapine was about 93 % over the concentration range of about 7 to about 1000 ng/ml. Olanzapine is bound predominantly to albumin and α1-acid-glycoprotein.

Biotransformation

Olanzapine is metabolized in the liver by conjugative and oxidative pathways. The major circulating metabolite is the 10-N-glucuronide, which does not pass the blood brain barrier. Cytochromes P450-CYP1A2 and P450-CYP2D6 contribute to the formation of the N-desmethyl and 2-hydroxymethyl metabolites, both exhibited significantly less in vivo pharmacological activity than olanzapine in animal studies. The predominant pharmacologic activity is from the parent olanzapine.

Elimination

After oral administration, the mean terminal elimination half-life of olanzapine in healthy subjects varied on the basis of age and gender.

In healthy elderly (65 and over) versus non-elderly subjects, the mean elimination half-life was prolonged (51.8 versus 33.8 hr) and the clearance was reduced (17.5 versus 18.2 l/hr). The pharmacokinetic variability observed in the elderly is within the range for the non-elderly. In 44 patients with schizophrenia > 65 years of age, dosing from 5 to 20 mg/day was not associated with any distinguishing profile of adverse events.

In female versus male subjects the mean elimination half life was somewhat prolonged (36.7 versus 32.3 hrs) and the clearance was reduced (18.9 versus 27.3 l/hr). However, olanzapine (5-20 mg) demonstrated a comparable safety profile in female (n = 467) as in male patients (n = 869).

Renal impairment

In renally impaired patients (creatinine clearance < 10 ml/min) versus healthy subjects, there was no significant difference in mean elimination half-life (37.7 versus 32.4 hr) or clearance (21.2 versus 25.0 l/hr). A mass balance study showed that approximately 57 % of radiolabelled olanzapine appeared in urine, principally as metabolites.

Smokers

In smoking subjects with mild hepatic dysfunction, mean elimination half-life (39.3 hr) was prolonged and clearance (18.0 l/hr) was reduced analogous to non-smoking healthy subjects (48.8 hr and

14.1 l/hr, respectively).

In non-smoking versus smoking subjects (males and females) the mean elimination half-life was prolonged (38.6 versus 30.4 hr) and the clearance was reduced (18.6 versus 27.7 l/hr).

The plasma clearance of olanzapine is lower in elderly versus young subjects, in females versus males, and in non-smokers versus smokers. However, the magnitude of the impact of age, gender, or smoking on olanzapine clearance and half-life is small in comparison to the overall variability between individuals.

In a study of Caucasians, Japanese, and Chinese subjects, there were no differences in the pharmacokinetic parameters among the three populations.

Paediatric population Adolescents (ages 13 to 17 years):

The pharmacokinetics of olanzapine are similar between adolescents and adults. In clinical studies, the average olanzapine exposure was approximately 27 % higher in adolescents. Demographic differences between the adolescents and adults include a lower average body weight and fewer adolescents were smokers. Such factors possibly contribute to the higher average exposure observed in adolescents.

5.3 Preclinical safety data

Acute (single-dose) toxicity

Signs of oral toxicity in rodents were characteristic of potent neuroleptic compounds: hypoactivity, coma, tremors, clonic convulsions, salivation, and depressed weight gain. The median lethal doses were approximately 210 mg/kg (mice) and 175 mg/kg (rats).

Dogs tolerated single oral doses up to 100 mg/kg without mortality. Clinical signs included sedation, ataxia, tremors, increased heart rate, labored respiration, miosis, and anorexia. In monkeys, single oral doses up to 100 mg/kg resulted in prostration and, at higher doses, semi-consciousness.

Repeated-dose toxicity

In studies up to 3 months duration in mice and up to 1 year in rats and dogs, the predominant effects were CNS depression, anticholinergic effects, and peripheral haematological disorders. Tolerance developed to the CNS depression. Growth parameters were decreased at high doses. Reversible effects consistent with elevated prolactin in rats included decreased weights of ovaries and uterus and morphologic changes in vaginal epithelium and in mammary gland.

Haematologic toxicity:

Effects on haematology parameters were found in each species, including dose-related reductions in circulating leukocytes in mice and non-specific reductions of circulating leukocytes in rats; however, no evidence of bone marrow cytotoxicity was found.

Reversible neutropenia, thrombocytopenia, or anaemia developed in a few dogs treated with 8 or 10 mg/kg/day (total olanzapine exposure [AUC] is 12- to 15-fold greater than that of a man given a

12-mg dose). In cytopenic dogs, there were no adverse events on progenitor and proliferating cells in the bone marrow.

Reproductive toxicity

Olanzapine had no teratogenic effects. Sedation affected mating performance of male rats. Estrous cycles were affected at doses of 1.1 mg/kg (3 times the maximum human dose) and reproduction parameters were influenced in rats given 3 mg/kg (9 times the maximum human dose).

In the offspring of rats given olanzapine, delays in foetal development and transient decreases in offspring activity levels were seen.

Mutagenicity

Olanzapine was not mutagenic or clastogenic in a full range of standard tests, which included bacterial mutation tests and in vitro and in vivo mammalian tests.

Carcinogenicity

Based on the results of studies in mice and rats, it was concluded that olanzapine is not carcinogenic.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Mannitol E 421

Microcrystalline cellulose

Aspartame E 951

Crospovidone

Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months

6.4 Special precautions for storage

Store below 30 C

6.5 Nature and contents of container

Aluminium/aluminium blisters in cartons of 28, 35, 56, 70 and 98 tablets per carton.

Not all pack sizes may be marketed

6.6 Special precautions for disposal

No special requirements

7. MARKETING AUTHORISATION HOLDER

Glenmark Pharmaceuticals Europe Limited

Laxmi House

2-B Draycott Avenue

Kenton

Harrow

Middlesex

HA3 OBU

United Kingdom

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/09/587/016

EU/1/09/587/017

EU/1/09/587/018

EU/1/09/587/019

EU/1/09/587/025

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 03 December 2009

Date of latest renewal: 19 August 2014

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu

Comments

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  • Help
  • Get it on Google Play
  • About
  • Info on site by:

  • Presented by RXed.eu

  • 27558

    prescription drugs listed